Skip to main content
Log in

On Exponential Stability for Thermoelastic Plates: Comparison and Singular Limits

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We consider different models of thermoelastic plates in a bounded reference configuration: with Fourier heat conduction or with the Cattaneo model, and with or without inertial term. Some models exhibit exponential stability, others are not exponential stable. In the cases of exponential stability, we give an explicit estimate for the rate of decay in terms of the essential parameters appearing (delay \(\tau \ge 0\), inertial constant \(\mu \ge 0\)). This is first done using multiplier methods directly in \(L^2\)-spaces, then, second, with eigenfunction expansions imitating Fourier transform techniques used for related Cauchy problems; also here essentially energy estimates are used, a spectral analysis is avoided. The explicit estimates allow for a comparison. The singular limits \(\tau \rightarrow 0\), and \(\mu \rightarrow 0\) are also investigated in order to understand the mutual relevance for the (non-) exponential stability of the models. Numerical simulations underline the results obtained analytically, and exhibit interesting coincidences of analytical and numerical estimates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Concerning a vivid discussion of the validity of hyperbolic heat equations we refer to [2].

References

  1. Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system without mechanical dissipation. Rend. Instit. Mat. Univ. Trieste Suppl. 28, 1–28 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Bright, T.J., Zhang, Z.M.: Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transf. 23, 601–607 (2009)

    Article  Google Scholar 

  3. Chang, S.K., Triggiani, R.: Spectral analysis of thermo-elastic plates with rotational forces. In: Optimal Control: Theory, Algorithms and Applications. Kluwer, pp. 84–115 (1998)

  4. Denk, R., Shibata, R.: Maximal regularity for the thermoelastic plate equations with free boundary conditions. J. Evol. Equ. 17, 215–261 (2017)

    Article  MathSciNet  Google Scholar 

  5. Fernández Sare, H.D., Muñoz Rivera, J.E.: Optimal rates of decay in 2-d thermoelasticity with second sound. J. Math. Phys. 53, 073509-1–13 (2012)

    Article  MathSciNet  Google Scholar 

  6. Fernández Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems—Cattaneo versus Fourier law. Arch. Rational Mech. Anal. 194, 221–251 (2009)

    Article  MathSciNet  Google Scholar 

  7. Grasselli, M., Squassina, M.: Exponential stability and singular limit for a linear thermoelastic plate with memory effects. Adv. Math. Sci. Appl. 16, 15–31 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Jiang, S., Racke, R.: Evolution Equations in Thermoelasticity. \(\pi \) Monographs Surveys Pure Appl. Math., vol. 112. Chapman & Hall/CRC, Boca Raton (2000)

    Google Scholar 

  9. Kim, J.U.: On the energy decay of a linear thermoelastic bar and plate. SIAM J. Math. Anal. 23, 889–899 (1992)

    Article  MathSciNet  Google Scholar 

  10. Lasiecka, I., Triggiani, R.: Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermoelastic equations. Adv. Differ. Equ. 3, 387–416 (1998)

    MATH  Google Scholar 

  11. Lasiecka, I., Triggiani, R.: Analyticity, and lack thereof, of thermo-elastic semigroups. ESAIM Proc. 4, 199–222 (1998)

    Article  MathSciNet  Google Scholar 

  12. Lasiecka, I., Triggiani, R.: Analyticity of thermo-elastic semigroups with coupled hinged/Neumann boundary conditions. Abstract Appl. Anal. 3, 153–169 (1998)

    Article  MathSciNet  Google Scholar 

  13. Lasiecka, I., Triggiani, R.: Analyticity of thermo-elastic semigroups with free boundary conditions. Annali Scuola Norm. Sup. Pisa 27, 457–482 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Lasiecka, I., Triggiani, R.: Structural decomposition of thermo-elastic semigroups with rotational forces. Semigroup Forum 50, 16–66 (2000)

    Article  MathSciNet  Google Scholar 

  15. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories, vol. 1. Abstract Parabolic Systems Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  16. Lasiecka, I., Wilke, M.: Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discret. Contin. Dyn. Syst. 33, 5189–5202 (2013)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., Zheng, S.: Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping. Q. Appl. Math. 53, 551–564 (1997)

    Article  MathSciNet  Google Scholar 

  18. Muñoz Rivera, J.E., Racke, R.: Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type. SIAM J. Math. Anal. 26, 1547–1563 (1995)

    Article  MathSciNet  Google Scholar 

  19. Muñoz Rivera, J.E., Racke, R.: Large solutions and smoothing properties for nonlinear thermoelastic systems. J. Differ. Equ. 127, 454–483 (1996)

    Article  MathSciNet  Google Scholar 

  20. Newmark, N.M.: A method of computation for structural dynamics. J. Engrg. Mech. Div. ASCE 85, 67–94 (1959)

    Article  Google Scholar 

  21. Naito, Y.: On the \(L_p\)-\(L_q\) maximal regularity for the linear thermoelastic plate equation in a bounded domain. Math. Methods Appl. Sci. 32, 1609–1637 (2009)

    Article  MathSciNet  Google Scholar 

  22. Quintanilla, R., Racke, R.: Addendum to: qualitative aspects of solutions in resonators. Arch. Mech. 63, 429–435 (2011)

    MATH  Google Scholar 

  23. Racke, R.: Heat conduction in elastic systems: fourier versus Cattaneo. In: Proc. International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Skukuza, South Africa, pp. 356–360 (2015)

  24. Racke, R., Ueda, Y.: Dissipative structures for thermoelastic plate equations in \({\mathbb{R}}^n\). Adv. Differ. Equ. 21, 601–630 (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer whose comments led to an improvement of the presentation. The authors have been supported by the Brazilian agency CNPq within the project “Ciências sem Fronteiras”, Grant #402689/2012-7. M. Sepúlveda thanks Bolsa PCI-LNCC 300246/2015-3, Fondecyt 1180868, and CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal. O. Vera thanks the support of Bolsa PCI-LNCC 2017. O. Vera and J. Muñoz Rivera thank Fondecyt 1191137. and Ec. Dif. Parciales: Modelamiento y Análisis (EDPMoA), VRIP-UBB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sepúlveda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, J.E.M., Racke, R., Sepúlveda, M. et al. On Exponential Stability for Thermoelastic Plates: Comparison and Singular Limits. Appl Math Optim 84, 1045–1081 (2021). https://doi.org/10.1007/s00245-020-09670-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09670-7

Keywords

Mathematics Subject Classification

Navigation