Skip to main content
Log in

Phase Field Approach to Optimal Packing Problems and Related Cheeger Clusters

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper stems from the idea of adopting a new approach to solve some classical optimal packing problems for balls. In fact, we attack this kind of problems (which are of discrete nature) by means of shape optimization techniques, applied to suitable \(\Gamma \)-converging sequences of energies associated to Cheeger type problems. More precisely, in a first step we prove that different optimal packing problems are limits of sequences of optimal clusters associated to the minimization of energies involving suitable (generalized) Cheeger constants. In a second step, we propose an efficient phase field approach based on a multiphase \(\Gamma \)-convergence result of Modica–Mortola type, in order to compute those generalized Cheeger constants, their optimal clusters and, as a consequence of the asymptotic result, optimal packings. Numerical experiments are carried over in two and three space dimensions. Our continuous shape optimization approach to solve discrete packing problems circumvents the NP-hard character of these ones, and efficiently leads to configurations close to the global minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baldo, S.: Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(2), 67–90 (1990)

    Article  MathSciNet  Google Scholar 

  2. Bogosel, B.: Efficient algorithm for optimizing spectral partitions, Preprint arXiv:1705.08739 (2017)

  3. Bogosel, B., Bonnaillie-Nöel, V.: Minimal Partitions for p-norms of Eigenvalues, Preprint arXiv:1612.07296 (2016)

  4. Bogosel, B., Oudet, É.: Qualitative and numerical analysis of a spectral problem with perimeter constraint. SIAM J. Control Optim. 54(1), 317–340 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bonnivard, M., Lemenant, A., Santambrogio, F.: Approximation of length minimization problems among compact connected sets. SIAM J. Math. Anal. 47(2), 1489–1529 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bourdin, B., Bucur, D., Oudet, É.: Optimal partitions for eigenvalues. SIAM J. Sci. Comput. 31(6), 4100–4114 (2009)

    Article  MathSciNet  Google Scholar 

  7. Braides, A.: \(\Gamma \)-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, Oxford (2002)

    Google Scholar 

  8. Bretin, E., Masnou, S.: A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics. Interfaces Free Bound. 19(2), 141–182 (2017)

    Article  MathSciNet  Google Scholar 

  9. Bucur, D., Fragalà, I.: On the honeycomb conjecture for Robin Laplacian eigenvalues. Preprint CVGMT, Communications in Contemporary Mathematics (to appear) (2018)

  10. Bucur, D., Fragalà, I., Velichkov, B., Verzini, G.: On the honeycomb conjecture for a class of minimal convex partitions. Transactions of the A.M.S. (to appear), Arxiv Preprint, arXiv:1703.05383 (2017)

  11. Caffarelli, L.A., Lin, F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007)

    Article  MathSciNet  Google Scholar 

  12. Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. M2AN Math. Model. Numer. Anal. 43(1), 139–150 (2009)

    Article  MathSciNet  Google Scholar 

  13. Caroccia, M.: Cheeger N-clusters. Calc. Var. Partial Differ. Equ. 56(2), 30 (2017)

    Article  MathSciNet  Google Scholar 

  14. Caselles, V., Facciolo, G., Meinhardt, E.: Anisotropic Cheeger sets and applications. SIAM J. Imaging Sci. 2(4), 1211–1254 (2009)

    Article  MathSciNet  Google Scholar 

  15. Chambolle, A., Merlet, B., Ferrari, L.: A simple phase-field approximation of the Steiner problem in dimension two. Adv. Calc. Var. arXiv:1609.00519 (2017)

  16. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser Boston Inc, Boston (1993)

    Google Scholar 

  17. Fodor, F.: The densest packing of \(19\) congruent circles in a circle. Geom. Dedic. 74(2), 139–145 (1999)

    Article  MathSciNet  Google Scholar 

  18. Grosso, A., Jamali, A.R.M.J.U., Locatelli, M., Schoen, F.: Solving the problem of packing equal and unequal circles in a circular container. J. Glob. Optim. 47(1), 63–81 (2010)

    Article  MathSciNet  Google Scholar 

  19. Hales, T.: The honeycomb conjecture. Discret. Comput. Geom. 25(1), 1–22 (2001)

    Article  MathSciNet  Google Scholar 

  20. Hales, T., Adams, Mark, Bauer, Gertrud, Dang, Tat Dat, Harrison, John, Hoang, Le Truong, Kaliszyk, Cezary, Magron, Victor, McLaughlin, Sean, Nguyen, Tat Thang, Nguyen, Quang Truong, Nipkow, Tobias, Obua, Steven, Pleso, Joseph, Rute, Jason, Solovyev, Alexey, Ta, ThiHoai An, Tran, Nam Trung, Trieu, Thi Diep, Urban, Josef, Ky, Vu, Zumkeller, Roland: A formal proof of the Kepler conjecture. Forum Math. Pi 5, e2, 29 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225(1), 103–118 (2006)

    Article  MathSciNet  Google Scholar 

  22. Kravitz, S.: Packing cylinders into cylindrical containers. Math. Mag. 40(2), 65–71 (1967)

    Article  MathSciNet  Google Scholar 

  23. Lachand-Robert, T., Oudet, E.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005)

    Article  MathSciNet  Google Scholar 

  24. Lemenant, A., Santambrogio, F.: A Modica–Mortola approximation for the Steiner problem. C. R. Math. Acad. Sci. Paris 352(5), 451–454 (2014)

    Article  MathSciNet  Google Scholar 

  25. Leonardi, G.P.: An overview on the Cheeger problem. In: Pratelli, A., Leugering, G. (eds.) New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166, pp. 117–139. Springer, Basel (2016)

    Chapter  Google Scholar 

  26. López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur. J. Oper. Res. 214(3), 512–525 (2011)

    Article  MathSciNet  Google Scholar 

  27. Massaccesi, A., Oudet, E., Velichkov, B.: Numerical Calibration of Steiner Trees. Appl. Math. Optim. 15, 1–18 (2017)

    MATH  Google Scholar 

  28. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  Google Scholar 

  29. Modica, L., Mortola, S.: Un esempio di \(\Gamma ^{-}\)-convergenza. Boll. Un. Mat. Ital. B 14(1), 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Morgan, F.: The hexagonal honeycomb conjecture. Trans. Amer. Math. Soc. 351(5), 1753–1763 (1999)

    Article  MathSciNet  Google Scholar 

  31. Oudet, E.: Approximation of partitions of least perimeter by \(\Gamma \)-convergence: around Kelvin’s conjecture. Exp. Math. 20(3), 260–270 (2011)

    Article  MathSciNet  Google Scholar 

  32. Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–21 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Pratelli, A., Saracco, G.: On the generalized Cheeger problem and an application to 2d strips. Rev. Mat. Iberoam. 33(1), 219–237 (2017)

    Article  MathSciNet  Google Scholar 

  34. Stewart, L.: MATLAB LBFGS Wrapper, http://www.cs.toronto.edu/~liam/software.shtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Bucur.

Additional information

This work was supported by the ANR-15-CE40-0006 COMEDIC project and GNAMPA (INDAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogosel, B., Bucur, D. & Fragalà, I. Phase Field Approach to Optimal Packing Problems and Related Cheeger Clusters. Appl Math Optim 81, 63–87 (2020). https://doi.org/10.1007/s00245-018-9476-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9476-y

Keywords

Mathematics Subject Classification

Navigation