Skip to main content

Advertisement

Log in

Differential Sensitivity Analysis of Variational Inequalities with Locally Lipschitz Continuous Solution Operators

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is concerned with the differential sensitivity analysis of variational inequalities in Banach spaces whose solution operators satisfy a generalized Lipschitz condition. We prove a sufficient criterion for the directional differentiability of the solution map that turns out to be also necessary for elliptic variational inequalities in Hilbert spaces (even in the presence of asymmetric bilinear forms, nonlinear operators and nonconvex functionals). Our method of proof is fully elementary. Moreover, our technique allows us to also study those cases where the variational inequality at hand is not uniquely solvable and where directional differentiability can only be obtained w.r.t. the weak or the weak-star topology of the underlying space. As tangible examples, we consider a variational inequality arising in elastoplasticity, the projection onto prox-regular sets, and a bang–bang optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly, S., Bourdin, L.: Sensitivity analysis of variational inequalities via twice epi-differentiability and proto-differentiability of the proximity operator. SIAM J. Optim. 28(2), 1699–1725 (2018). https://doi.org/10.1137/17M1135013

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Betz, T., Meyer, C.: Second-order sufficient optimality conditions for optimal control of static elastoplasticity with hardening. ESAIM Control Optim. Calc. Var. 21(1), 271–300 (2015). https://doi.org/10.1051/cocv/2014024

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    Book  Google Scholar 

  5. Borwein, J., Noll, D.: Second order differentiability of convex functions in Banach spaces. Trans. Am. Math. Soc. 342(1), 43–81 (1994). https://doi.org/10.2307/2154684

    Article  MathSciNet  MATH  Google Scholar 

  6. Casas, E.: Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50(4), 2355–2372 (2012). https://doi.org/10.1137/120862892

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E., Wachsmuth, D., Wachsmuth, G.: Sufficient second-order conditions for bang-bang control problems. SIAM J. Control Optim. 55(5), 3066–3090 (2017). https://doi.org/10.1137/16M1099674

    Article  MathSciNet  MATH  Google Scholar 

  8. Christof, C., Meyer, C.: Sensitivity analysis for a class of \(H_0^1\)-elliptic variational inequalities of the second kind. Set-Valued Var. Anal. (to appear) (2018). https://doi.org/10.1007/s11228-018-0495-2

    Article  Google Scholar 

  9. Christof, C., Wachsmuth, G.: On the non-polyhedricity of sets with upper and lower bounds in dual spaces. GAMM-Mitteilungen 40(4), 339–350 (2017). https://doi.org/10.1002/gamm.201740005

    Article  MathSciNet  Google Scholar 

  10. Christof, C., Wachsmuth, G.: No-gap second-order conditions via a directional curvature functional. SIAM J. Optim. 28(3), 2097–2130 (2018). https://doi.org/10.1137/17M1140418

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Handbook of Nonconvex Analysis and Applications, pp. 99–182. Int. Press, Somerville, MA (2010)

  12. De los Reyes, J., Meyer, C.: Strong stationarity conditions for a class of optimization problems governed by variational inequalities of the second kind. J. Optim. Theory Appl. 168(2), 375–409 (2016). https://doi.org/10.1007/s10957-015-0748-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Deckelnick, K., Hinze, M.: A note on the approximation of elliptic control problems with bang-bang controls. Comput. Optim. Appl. 51(2), 931–939 (2012). https://doi.org/10.1007/s10589-010-9365-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Do, C.: Generalized second-order derivatives of convex functions in reflexive Banach spaces. Trans. Am. Math. Soc. 334(1), 281–301 (1992). https://doi.org/10.2307/2153983

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Company, Amsterdam (1976)

    MATH  Google Scholar 

  16. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions, revised edn. CRC Press, Boca Raton, FL (2015)

    Book  Google Scholar 

  17. Felgenhauer, U.: Directional Sensitivity Differentials for Parametric Bang-Bang Control Problems, pp. 264–271. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12535-5_30

    Chapter  Google Scholar 

  18. Fitzpatrick, S., Phelps, R.: Differentiability of the metric projection in Hilbert space. Trans. Am. Math. Soc. 270(2), 483–501 (1982). https://doi.org/10.1090/S0002-9947-1982-0645326-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977). https://doi.org/10.2969/jmsj/02940615

    Article  MathSciNet  MATH  Google Scholar 

  20. Herzog, R., Meyer, C., Wachsmuth, G.: B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23(1), 321–352 (2013). https://doi.org/10.1137/110821147

    Article  MathSciNet  MATH  Google Scholar 

  21. Hintermüller, M., Surowiec, T.: On the directional differentiability of the solution mapping for a class of variational inequalities of the second kind. Set-Valued Var. Anal. (2017). https://doi.org/10.1007/s11228-017-0408-9

    Article  MathSciNet  Google Scholar 

  22. Jang-Ho, R., Maurer, H.: Sensitivity analysis of optimal control problems with bang-bang controls. In: 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475). IEEE (2004). https://doi.org/10.1109/cdc.2003.1271649

  23. Kuttler, K.: Modern Analysis. Studies in Advanced Mathematics. Taylor & Francis, London (1997)

    Google Scholar 

  24. Levy, A.: Implicit multifunction theorems for the sensitivity analysis of variational conditions. Math. Program. 74, 333–350 (1996). https://doi.org/10.1007/BF02592203

    Article  MathSciNet  MATH  Google Scholar 

  25. Levy, A.: Sensitivity of solutions to variational inequalities on Banach spaces. SIAM J. Control Optim. 38(1), 50–60 (1999). https://doi.org/10.1137/S036301299833985X

    Article  MathSciNet  MATH  Google Scholar 

  26. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976). https://doi.org/10.1016/0022-1236(76)90017-3

    Article  MATH  Google Scholar 

  27. Noll, D.: Directional differentiability of the metric projection in Hilbert space. Pac. J. Math. 170(2), 567–592 (1995). https://doi.org/10.2140/pjm.1995.170.567

    Article  MathSciNet  MATH  Google Scholar 

  28. Oden, J., Kikuchi, N.: Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Eng. Sci. 18(527), 1173–1284 (2016). https://doi.org/10.1016/0020-7225(80)90111-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000). https://doi.org/10.1090/S0002-9947-00-02550-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Qui, N.T., Wachsmuth, D.: Stability for bang-bang control problems of partial differential equations. (2017). https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1080_02331934.2018.1522634&d=DwICAg&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=eIE3I0XpWWrhwtq0qhyjYYVSdRw0yjTwnJuvumozR6g&m=Td4zso4u1tg-9syxMGDnbmdMSGgzuYCL3i2Ke0J3g8w&s=WYEO0Hkqi5FIW3YIaBZhVhjdbRhYtaCKNrg8eyYXHGA&e=

  31. Rockafellar, R.T.: Maximal monotone relations and the second derivatives of nonsmooth functions. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 2(3), 167–184 (1985). https://doi.org/10.1016/S0294-1449(16)30401-2

    Article  MathSciNet  Google Scholar 

  32. Rockafellar, R.T.: Generalized second derivatives of convex functions and saddle functions. Trans. Am. Math. Soc. 322(1), 51–77 (1990). https://doi.org/10.2307/2001522

    Article  MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.T., Wets, R.B.: Variational analysis. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3

    Book  Google Scholar 

  34. Shapiro, A.: Directionally nondifferentiable metric projection. J. Optim. Theory Appl. 81(1), 203–204 (1994). https://doi.org/10.1007/BF02190320

    Article  MathSciNet  MATH  Google Scholar 

  35. Shapiro, A.: Existence and differentiability of metric projections in Hilbert spaces. SIAM J. Optim. 4(1), 130–141 (1994). https://doi.org/10.1137/0804006

    Article  MathSciNet  MATH  Google Scholar 

  36. Shapiro, A.: Differentiability properties of metric projections onto convex sets. J. Optim. Theory Appl. 169(3), 953–964 (2016). https://doi.org/10.1007/s10957-016-0871-8

    Article  MathSciNet  MATH  Google Scholar 

  37. Sokołowski, J.: Sensitivity analysis of contact problems with prescribed friction. Appl. Math. Optim. 18(1), 99–117 (1988). https://doi.org/10.1007/BF01443617

    Article  MathSciNet  MATH  Google Scholar 

  38. Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization. Springer, New York (1992)

    Book  Google Scholar 

  39. Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3), 858–886 (2011). https://doi.org/10.1051/cocv/2010027

    Article  MathSciNet  MATH  Google Scholar 

  40. Zarantonello, E.: Projections on convex sets in Hilbert space and spectral theory i and ii. In: Contributions in Nonlinear Functional Analysis, pp. 237–424 (1971). https://doi.org/10.1016/B978-0-12-775850-3.50013-3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Christof.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the German Research Foundation (DFG) under Grant Numbers ME 3281/7-1 and WA 3636/4-1 within the priority program “Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization” (SPP 1962).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christof, C., Wachsmuth, G. Differential Sensitivity Analysis of Variational Inequalities with Locally Lipschitz Continuous Solution Operators. Appl Math Optim 81, 23–62 (2020). https://doi.org/10.1007/s00245-018-09553-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-09553-y

Keywords

Mathematics Subject Classification

Navigation