Skip to main content
Log in

An augmented fully-mixed finite element method for a coupled flow-transport problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we analyze the coupling of the Stokes equations with a transport problem modelled by a scalar nonlinear convection–diffusion problem, where the viscosity of the fluid and the diffusion coefficient depend on the solution to the transport problem and its gradient, respectively. An augmented mixed variational formulation for both the fluid flow and the transport model is proposed. As a consequence, no discrete inf-sup conditions are required for the stability of the associated Galerkin scheme, and therefore arbitrary finite element subspaces can be used, which constitutes one of the main advantages of the present approach. In particular, the resulting fully-mixed finite element method can employ Raviart–Thomas spaces of order k for the Cauchy stress, continuous piecewise polynomials of degree \(k + 1\) for the velocity and for the scalar field, and discontinuous piecewise polynomial approximations for the gradient of the concentration. In turn, the Lax–Milgram lemma, monotone operators theory, and the classical Schauder and Brouwer fixed point theorems are utilized to establish existence of solution of the continuous and discrete formulations. In addition, suitable estimates, arising from the combined use of a regularity assumption with the Sobolev embedding and Rellich–Kondrachov compactness theorems, are also required for the continuous analysis. Then, sufficiently small data allow us to prove uniqueness of solution and to derive optimal a priori error estimates. Finally, several numerical tests, illustrating the performance of our method and confirming the predicted rates of convergence, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Elsevier Ltd (2003)

  2. Álvarez, M., Gatica, G.N., Ruiz-Baier, R.: An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM Math. Model. Numer. Anal. 49(5), 1399–1427 (2015)

    Article  MathSciNet  Google Scholar 

  3. Álvarez, M., Gatica, G.N., Ruiz-Baier, R.: A mixed-primal finite element approximation of a steady sedimentation-consolidation system. Math. Models Methods Appl. Sci. 26(5), 867–900 (2016)

    Article  MathSciNet  Google Scholar 

  4. Álvarez, M., Gatica, G.N., Ruiz-Baier, R.: A posteriori error analysis for a viscous flow-transport problem. ESAIM Math. Model. Numer. Anal. 50(6), 1789–1816 (2016)

    Article  MathSciNet  Google Scholar 

  5. Álvarez, M., Gatica, G.N., Ruiz-Baier, R.: A posteriori error estimation for an augmented mixed-primal method applied to sedimentation-consolidation systems. J. Comput. Phys. 367, 322–346 (2018)

    Article  MathSciNet  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  Google Scholar 

  7. Bulíček, M., Pustějovská, P.: Existence analysis for a model describing flow of an incompressible chemically reacting non-Newtonian fluid. SIAM J. Math. Anal. 46(5), 3223–3240 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bürger, R., Liu, C., Wendland, W.L.: Existence and stability for mathematical models of sedimentation-consolidation processes in several space dimensions. J. Math. Anal. Appl. 264(2), 288–310 (2001)

    Article  MathSciNet  Google Scholar 

  9. Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comput. 86(304), 589–615 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ciarlet, P.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    MATH  Google Scholar 

  11. Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016)

    Article  MathSciNet  Google Scholar 

  12. Colmenares, E., Gatica, G.N., Oyarzúa, R.: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54(1), 167–205 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cox, C., Lee, H., Szurley, D.: Finite element approximation of the non-isothermal Stokes–Oldroyd equations. Int. J. Numer. Anal. Model. 4(3–4), 425–440 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Davis, T.: Algorithm 832: UMFPACK V4.3: an unsymmetric-pattern multifrontal method. ACM. Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  MathSciNet  Google Scholar 

  15. Farhloul, M., Nicaise, S., Paquet, L.: A refined mixed finite element method for the Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21(2), 525–551 (2001)

    Article  MathSciNet  Google Scholar 

  16. Farhloul, M., Zine, A.: A dual mixed formulation for non-isothermal Oldroyd–Stokes problem. Math. Model. Nat. Phenom. 6(5), 130–156 (2011)

    Article  MathSciNet  Google Scholar 

  17. Figueroa, L.E., Gatica, G.N., Márquez, A.: Augmented mixed finite element methods for the stationary Stokes equations. SIAM J. Sci. Comput. 31(2), 1082–1119 (2008/09)

  18. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics, Springer, Berlin (2014)

  19. Gatica, G.N., Hsiao, G.C.: On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in \({{\rm R}}^2\). Numer. Math. 61(2), 171–214 (1992)

    Article  MathSciNet  Google Scholar 

  20. Gatica, G.N., Márquez, A., Sánchez, M.A.: Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17–20), 1064–1079 (2010)

    Article  MathSciNet  Google Scholar 

  21. Gatica, G.N., Wendland, W.L.: Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63(1–2), 39–75 (1996)

    Article  MathSciNet  Google Scholar 

  22. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Nečas, J.: Introduction to the Theory of Nonlinear Elliptic Equations. Reprint of the 1983 edition. A Wiley-Interscience Publication. Wiley, Chichester (1986)

  24. Oyarzúa, R., Qin, T., Schötzau, D.: An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34(3), 1104–1135 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Sergio Caucao for his great help in the computational implementation of the numerical examples reported in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnológicos de Excelencia con Financiamiento Basal; and by Centro de Investigación en Ingeniería Matemática (\(\hbox {CI}^2\hbox {MA}\)), Universidad de Concepción.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatica, G.N., Inzunza, C. An augmented fully-mixed finite element method for a coupled flow-transport problem. Calcolo 57, 8 (2020). https://doi.org/10.1007/s10092-020-0355-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-020-0355-y

Keywords

Mathematics Subject Classification

Navigation