Skip to main content
Log in

Full discretization of time dependent convection–diffusion–reaction equation coupled with the Darcy system

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this article, we study the time dependent convection–diffusion–reaction equation coupled with the Darcy equation. We propose and analyze two numerical schemes based on finite element methods for the discretization in space and the implicit Euler method for the discretization in time. An optimal a priori error estimate is then derived for each numerical scheme. Finally, we present some numerical experiments that confirm the theoretical accuracy of the discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abboud, H., Girault, V., Sayah, T.: A second order accuracy in time for a full discretized time-dependent Navier–Stockes equations by a two-grid scheme. Numer. Math. 114, 189–231 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21, 337–344 (1984)

    Article  MathSciNet  Google Scholar 

  3. Bernardi, C., Girault, V.: A local regularisation operation for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier–Stokes et de la chaleur: le modèle et son approximation par éléments finis. RAIRO Modél. Math. Anal. Numér. 29(7), 871–921 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bernardi, C., Dib, S., Girault, V., Hecht, F., Murat, F., Sayah, T.: Finite mlement method for Darcy’s problem coupled with the heat equation. Numer. Math. 139(2), 315–348 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bernardi, C., Yakoubi, D., Maarouf, S.: Spectral discretization of Darcy’s equations coupled with the heat equation. IMA J. Numer. Anal. 36, 1–24 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Boussinesq, J.: Théorie analytique de la chaleur. Lecture Notes in Mathematics, vol. 2. Gauthier-Villars, Paris (1903)

    Google Scholar 

  8. Chen, Z., Ewing, R.: Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30, 431–453 (1999)

    Article  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, Finite Element Methods (Part I), vol. II, pp. 17–343. North-Holland, Amsterdam (1991)

    Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  11. Deteix, J., Jendoubi, A., Yakoubi, D.: A coupled prediction scheme for solving the Navier–Stokes and convection–diffusion equations. SIAM J. Numer. Anal. 52(5), 2415–2439 (2014)

    Article  MathSciNet  Google Scholar 

  12. Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)

    Article  MathSciNet  Google Scholar 

  13. Gaultier, M., Lezaun, M.: Équations de Navier–Stokes couplées à des équations de la chaleur: résolution par une méthode de point fixe en dimension infinie. Ann. Sci. Math. Québec 13(1), 1–17 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for the Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics 5. Springer, Berlin (1986)

    Book  Google Scholar 

  15. Girault, V., Lions, J.L.: Two-grid finite-element schemes for the steady Navier–Stokes problem in polyhedra. Port. Math. Nova Sér. 58(1), 25–57 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Douglas, J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numér. Tome 17, 17–33 (1983)

    Article  MathSciNet  Google Scholar 

  17. Douglas, J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numér. Tome 17, 249–265 (1983)

    Article  MathSciNet  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, J., Rivière, B., Walkington, N.J.: Convergence of a high order method in time and space for the miscible displacement equations. ESAIM Math. Model. Numer. Anal. 49, 953–976 (2015)

    Article  MathSciNet  Google Scholar 

  20. Rivière, B., Walkington, N.J.: Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J. Numer. Anal. 49(3), 1085–1110 (2011)

    Article  MathSciNet  Google Scholar 

  21. Roberts, J.E., Thomas, J.-M.: Mixed and Hybrid Methods. Handbook of Numerical Analysis, Finite Element Methods (Part I), vol. II, pp. 523–637. North-Holland, Amsterdam (1991)

    Google Scholar 

  22. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  23. Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31(5), 3661–3684 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca El Zahlaniyeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalhoub, N., Omnes, P., Sayah, T. et al. Full discretization of time dependent convection–diffusion–reaction equation coupled with the Darcy system. Calcolo 57, 4 (2020). https://doi.org/10.1007/s10092-019-0352-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0352-1

Keywords

Mathematics Subject Classification

Navigation