Skip to main content
Log in

Ultra-weak symmetry of stress for augmented mixed finite element formulations in continuum mechanics

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we propose a novel way to prescribe weakly the symmetry of stress tensors in weak formulations amenable to the construction of mixed finite element schemes. The approach is first motivated in the context of solid mechanics (using, for illustrative purposes, the linear problem of linear elasticity), and then we apply this technique to reduce the computational cost of augmented fully-mixed methods for thermal convection problems in fluid mechanics, in the case where several additional variables are defined. We show that the new approach allows to maintain the same structure of the mathematical analysis as in the original formulations. Therefore we only need to focus on ellipticity of certain bilinear forms, as this property provides feasible ranges for the stabilization parameters that complete the description of augmented methods. In addition, we present some numerical examples to show that these methods perform better than their counterparts that include vorticity, and emphasize that the reduction in degrees of freedom (and therefore, in computational cost) does not affect the quality of numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, S., Cockburn, B.: A mixed finite element for elasticity in three dimensions. J. Sci. Comput. 25, 515–521 (2005)

    Article  MathSciNet  Google Scholar 

  2. Almonacid, J.A., Gatica, G.N.: A fully-mixed finite element method for the Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math. (2019). https://doi.org/10.1515/cmam-2018-0187

  3. Almonacid, J.A., Gatica, G.N., Oyarzúa, R.: A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo 55(3), 36 (2018)

    Article  MathSciNet  Google Scholar 

  4. Almonacid, J.A., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R.: A new mixed finite element method for the \(n\)-dimensional Boussinesq problem with temperature-dependent viscosity. Preprint 2018–18, Centro de Investigacion en Ingenieria Matematica (\(\text{CI}^2\text{ MA }\)). Universidad de Concepcion, Chile (2018)

  5. Alvarez, M., Gatica, G.N., Gomez-Vargas, B., Ruiz-Baier, R.: New mixed finite element methods for natural convection with phase-change in porous media. J. Sci. Comput. 80(1), 141–174 (2019)

    Article  MathSciNet  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1, 347–367 (1984)

    Article  MathSciNet  Google Scholar 

  7. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods. II. The elasticity complex. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations. IMA Vol. Math. Appl., vol. 142, pp. 47–67. Springer, New York (2006)

    Chapter  Google Scholar 

  8. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  9. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)

    Article  MathSciNet  Google Scholar 

  10. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002)

    Article  MathSciNet  Google Scholar 

  11. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A stress/displacement virtual element method for plane elasticity problems. Comput. Methods Appl. Mech. Eng. 325, 155–174 (2017)

    Article  MathSciNet  Google Scholar 

  12. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle. Comput. Methods Appl. Mech. Eng. 340, 978–999 (2018)

    Article  MathSciNet  Google Scholar 

  13. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8, 1–28 (2009)

    Article  MathSciNet  Google Scholar 

  14. Camaño, J., Oyarzúa, R., Ruiz-Baier, R., Tierra, G.: Error analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions. IMA J. Numer. Anal. 38(3), 1452–1484 (2018)

    Article  MathSciNet  Google Scholar 

  15. Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016)

    Article  MathSciNet  Google Scholar 

  16. Colmenares, E., Gatica, G.N., Oyarzúa, R.: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54(1), 167–205 (2017)

    Article  MathSciNet  Google Scholar 

  17. Fraejis de Veubeke, B.X.: Stress function approach. In: World Congress on the Finite Element Method in Structural Mechanics, Bournemouth (1975)

  18. Gatica, G.N.: Analysis of a new augmented mixed finite element method for linear elasticity allowing \(\mathbb{RT}_0-\mathbb{P}_1-\mathbb{P}_0\) approximations, M2AN Math. Model. Numer. Anal. 40(1), 1–28 (2006)

    Article  MathSciNet  Google Scholar 

  19. Gatica, G.N.: An augmented mixed finite element method for linear elasticity with non-homogeneous Dirichlet conditions. Electron. Trans. Numer. Anal. 26, 421–438 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014)

    Book  Google Scholar 

  21. Gatica, G.N., Márquez, A., Meddahi, S.: An augmented mixed finite element method for 3D linear elasticity problems. J. Comput. Appl. Math. 231(2), 526–540 (2009)

    Article  MathSciNet  Google Scholar 

  22. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  23. Pechstein, A., Sch\(\ddot{{\text{ b }}}\)erl, J.: Tangential-displacement and normal–normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21(8), 1761–1782 (2011)

  24. Pechstein, A., Sch\(\ddot{\text{ b }}\)erl, J.: An analysis of the TDNNS method using natural norms. Numer. Math. 139(1), 93–120 (2018)

  25. Stenberg, R.: A family of mixed finite element methods for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and Fondecyt project 1161325; by Centro de Investigación en Ingeniería Matemática (\(\hbox {CI}^2\)MA), Universidad de Concepción; and by the Oxford Centre for Doctoral Training in Industrially Focused Mathematical Modelling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almonacid, J.A., Gatica, G.N. & Ruiz-Baier, R. Ultra-weak symmetry of stress for augmented mixed finite element formulations in continuum mechanics. Calcolo 57, 2 (2020). https://doi.org/10.1007/s10092-019-0351-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-019-0351-2

Keywords

Mathematics Subject Classification

Navigation