Skip to main content
Log in

Camassa–Holm Cuspons, Solitons and Their Interactions via the Dressing Method

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A dressing method is applied to a matrix Lax pair for the Camassa–Holm equation, thereby allowing for the construction of several global solutions of the system. In particular, solutions of system of soliton and cuspon type are constructed explicitly. The interactions between soliton and cuspon solutions of the system are investigated. The geometric aspects of the Camassa–Holm equation are re-examined in terms of quantities which can be explicitly constructed via the inverse scattering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. This should not be confused with J from the ZS spectral problem (2.11).

References

  • Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993). arXiv:patt-sol/9305002

    MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    MATH  Google Scholar 

  • Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S.: A connection between the Camassa–Holm equations and turbulent flows in channels and pipes. Phys. Fluids 11, 2343–2353 (1999). https://doi.org/10.1063/1.870096

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A.: On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal. 155, 352–363 (1998)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Escher, J.: Global existence and blow up for a shallow water equation. Ann. Sc. Norm. Sup. Pisa Ser. IV 26, 303–328 (1998a)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181, 229–243 (1998b)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Ivanov, R.: Dressing method for the Degasperis–Procesi equation. Stud. Appl. Math. (2016). https://doi.org/10.1111/sapm.12149. arXiv:1608.02120 [nlin.SI]

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa–Holm equation. Inv. Probl. 22, 2197–2207 (2006). arXiv: nlin/0603019v2 [nlin.SI]

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Gerdjikov, V., Ivanov, R.: Generalised Fourier transform for the Camassa–Holm hierarchy. Inv. Probl. 23, 1565–1597 (2007). arxiv:nlin.SI/0707.2048

    MATH  Google Scholar 

  • Constantin, A., Ivanov, R., Lenells, J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559–2575 (2010). arXiv:1205.4754 [nlin.SI]

    MathSciNet  MATH  Google Scholar 

  • Dai, H.-H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mech. 127, 193–207 (1998)

    MathSciNet  MATH  Google Scholar 

  • de Monvel, A.B., Shepelsky, D.: Riemann–Hilbert approach for the Camassa–Holm equation on the line. C. R. Math. Acad. Sci. Paris 343, 627–32 (2006)

    MathSciNet  MATH  Google Scholar 

  • de Monvel, A.B., Shepelsky, D.: A Riemann–Hilbert approach for the Degasperis–Procesi equation. Nonlinearity 26, 2081–2107 (2013). arXiv:1107.5995 [nlin.SI]

    MathSciNet  MATH  Google Scholar 

  • Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999)

    Google Scholar 

  • Degasperis, A., Holm, D., Hone, A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1461–1472 (2002)

    MathSciNet  Google Scholar 

  • Dullin, H.R., Gottwald, G.A., Holm, D.D.: Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves. Fluid Dyn. Res. 33, 73–95 (2003)

    MathSciNet  MATH  Google Scholar 

  • Dullin, H.R., Gottwald, G.A., Holm, D.D.: On asymptotically equivalent shallow water wave equations. Physica D 190, 1–14 (2004)

    MathSciNet  MATH  Google Scholar 

  • Fokas, A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    MathSciNet  MATH  Google Scholar 

  • Fokas, A.S., Fuchssteiner, B.: On the structure of symplectic operators and hereditary symmetries. Lett. Nuovo Cimento 28, 299–303 (1980)

    MathSciNet  Google Scholar 

  • Gerdjikov, V., Vilasi, G., Yanovski, A.: Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods. Lecture Notes in Physics, vol. 748. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro–Geometric Solutions, Volume I: (1+1)-Dimensional Continuous Models. Cambridge Studies in Advanced Mathematics, vol. 79. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Holm, D., Staley, M.: Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a \(+1\) nonlinear evolutionary PDE. Phys. Lett. A 308, 437–444 (2003)

    MathSciNet  MATH  Google Scholar 

  • Holm, D., Marsden, J.: Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation. In: Marsden, J., Ratiu, T. (eds.) The Breadth of Symplectic and Poisson Geometry. Progr. Math., vol. 232, pp. 203–235. Birkhäuser, Boston (2004)

    Google Scholar 

  • Holm, D., Ivanov, R.: Smooth and peaked solitons of the Camassa–Holm equation and applications. J. Geom. Symm. Phys. 22, 13–49 (2011)

    MathSciNet  MATH  Google Scholar 

  • Holm, D., Marsden, J., Ratiu, T.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998a)

    MathSciNet  MATH  Google Scholar 

  • Holm, D., Marsden, J., Ratiu, T.: Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349, 4173–4176 (1998b)

    Google Scholar 

  • Hone, A.: The associated Camassa–Holm equation and the KdV equation. J. Phys. A Math. Gen. 32, L307–L314 (1999)

    MathSciNet  MATH  Google Scholar 

  • Ivanov, R.I.: Conformal properties and Bäcklund transform for the associated Camassa–Holm equation. Phys. Lett. A 345, 235–243 (2005). arxiv:nlin.SI/0507005

    Google Scholar 

  • Ivanov, R., Lyons, T., Orr, N.: A dressing method for soliton solutions of the Camassa–Holm equation. AIP Conf. Proc. 1895, 040003 (2017). https://doi.org/10.1063/1.5007370

    Article  Google Scholar 

  • Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid. Mech. 457, 63–82 (2002)

    MathSciNet  MATH  Google Scholar 

  • Johnson, R.S.: On solutions of the Camassa–Holm equation. Proc. R. Soc. Lond. A 459, 1687–1708 (2003a)

    MathSciNet  MATH  Google Scholar 

  • Johnson, R.S.: The Camassa–Holm equation for water waves moving over a shear flow. Fluid Dyn. Res. 33, 97–111 (2003b)

    MathSciNet  MATH  Google Scholar 

  • Kirillov, A.: The orbits of the group of diffeomorphisms of the circle, and local Lie superalgebras. Funct. Anal. Appl. 15, 135–136 (1981)

    MathSciNet  MATH  Google Scholar 

  • Kirillov, A.: The orbit method, II: infinite-dimensional Lie groups and Lie algebras. Contemp. Math. 145, 33–63 (1993)

    MathSciNet  MATH  Google Scholar 

  • Li, Y., Zhang, J.: The multiple-soliton solutions of the Camassa–Holm equation. Proc. R. Soc. Lond. A 460, 2617–2627 (2004)

    MathSciNet  MATH  Google Scholar 

  • Matsuno, Y.: Parametric representation for the multisoliton solution of the Camassa–Holm equation. J. Phys. Soc. Jpn. 74, 1983–1987 (2005). arXiv:nlin.SI/0504055

    MathSciNet  MATH  Google Scholar 

  • Matsuno, Y.: The peakon limit of the N-soliton solution of the Camassa–Holm equation. J. Phys. Soc. Jpn. 76, 034003 (2007). arXiv:nlin/0701051

    Google Scholar 

  • Misiolek, G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    MathSciNet  MATH  Google Scholar 

  • Novikov, S.P., Manakov, S.V., Pitaevsky, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Plenum, New York (1984)

    Google Scholar 

  • Parker, A.: On the Camassa–Holm equation and a direct method of solution I. Bilinear form and solitary waves. Proc. R. Soc. Lond. A 460, 2929–2957 (2004)

    MathSciNet  MATH  Google Scholar 

  • Parker, A.: On the Camassa–Holm equation and a direct method of solution II. Soliton solutions. Proc. R. Soc. Lond. A 461, 3611–3632 (2005a)

    MathSciNet  MATH  Google Scholar 

  • Parker, A.: On the Camassa–Holm equation and a direct method of solution III. N-soliton solutions. Proc. R. Soc. Lond. A 461, 3893–3911 (2005b)

    MathSciNet  MATH  Google Scholar 

  • Parker, A.: Cusped solitons of the Camassa–Holm equation I. Cuspon solitary wave and antipeakon limit. Chaos Solitons Fractals 34, 730–739 (2007)

    MathSciNet  MATH  Google Scholar 

  • Parker, A.: Cusped solitons of the Camassa–Holm equation. II. Binary cuspon–soliton interactions. Chaos Solitons Fractals 41, 1531–1549 (2009)

    MathSciNet  MATH  Google Scholar 

  • Parker, A., Matsuno, Y.: The peakon limits of soliton solutions of the Camassa–Holm equation. J. Phys. Soc. Jpn. 75, 124001 (2006)

    Google Scholar 

  • Popivanov, P., Slavova, A.: Nonlinear Waves: An Introduction. World Scientific, Hackensack (2011)

    MATH  Google Scholar 

  • Rasin, A., Schiff, J.: Bäcklund transformations for the Camassa–Holm equation. J. Nonlinear Sci. 27, 45–69 (2017). https://doi.org/10.1007/s00332-016-9325-6. arXiv:1508.05636 [nlin.SI]

    Article  MathSciNet  MATH  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: A scheme for integrating nonlinear evolution equations of mathematical physics by the inverse scattering method. I. Funct. Anal. Appl. 8, 226–235 (1974)

    MATH  Google Scholar 

  • Zakharov, V.E., Shabat, A.B.: Integration of the nonlinear equations of mathematical physics by the inverse scattering method II. Funct. Anal. Appl. 13, 166–174 (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

R.I. is grateful to Prof. D.D. Holm for many discussions on the problems treated in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossen Ivanov.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In appendix, we provide some details on the derivation of the soliton–cuspon solution. Applying equation (3.2) to the dressing factor g as given by Eq. (4.54) ensures the matrix-valued residues satisfy the following

$$\begin{aligned} \begin{aligned}&A_{1,y}+h \sigma _3 A_1 - A_1 h_0\sigma _3 - i\omega _1 [J, A_1]=0, \\&B_{2,y}+h \sigma _3 B_2 - B_2 h_0\sigma _3 - \lambda _2 [J, B_2]=0. \end{aligned} \end{aligned}$$
(7.1)

Writing the rank one matrix solutions \(A_1\) and \(B_2\) in the form

$$\begin{aligned} \begin{aligned} A_1&= \left| {n}\right\rangle \left\langle {m}\right| , \qquad B_2 = \left| {N}\right\rangle \left\langle {M}\right| ,\\ \end{aligned} \end{aligned}$$
(7.2)

we deduce

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _y \left| {n}\right\rangle + (h\sigma _3-i\omega _1 J)\left| {n}\right\rangle =0, \qquad \partial _y\left\langle {m}\right| = \left\langle {m}\right| (h_0\sigma _3-i\omega _1 J)\\ \partial _y \left| {N}\right\rangle + (h\sigma _3-\lambda _2 J)\left| {N}\right\rangle =0, \qquad \partial _y\left\langle {M}\right| = \left\langle {M}\right| (h_0\sigma _3-\lambda _2 J). \end{array}\right. } \end{aligned}$$
(7.3)

The vectors \(\left\langle {m}\right| ,\left\langle {M}\right| \) satisfy the bare equations and therefore are known in principle and have been obtained previously (see Sects. 4.34.4).

The dressing factor (4.54) at \(\lambda =0\) is

$$\begin{aligned} g(y,t;0)= & {} \mathbb {1}- 2(A_1+B_2)=\mathrm {diag}(g_{11},g_{22})\nonumber \\= & {} \mathrm {diag}\left( \frac{i\omega _1 M_1 m_2 -\lambda _2 M_2 m_1}{i\omega _1 M_2 m_1-\lambda _2 M_1 m_2},\frac{i\omega _1 M_2 m_1-\lambda _2 M_1 m_2}{i\omega _1 M_1 m_2 -\lambda _2 M_2 m_1} \right) , \end{aligned}$$
(7.4)

while the differential equation for X(yt) is

$$\begin{aligned} (\partial _y X) e^{X-2h_0 y-u_0 t} =g_{22}^2=\left( \frac{\lambda _1 M_2 m_1-\lambda _2 M_1 m_2}{\lambda _1 M_1 m_2 -\lambda _2 M_2 m_1}\right) ^2. \end{aligned}$$
(7.5)

Choosing \(m_1, m_2\) as per the soliton solution cf. (Ivanov et al. 2017) and recalling \(\Lambda _1=\sqrt{h_0^2-\omega _1^2}\), we then have

$$\begin{aligned} \begin{aligned} m_1&=\mu _1\sqrt{\frac{h_0+\Lambda _1}{2\Lambda _1}}e^{\Omega _1(y,t)}+\mu _2 \sqrt{\frac{h_0-\Lambda _1}{2\Lambda _1}}e^{-\Omega _1(y,t)},\\ m_2&=i\left( \mu _1 \sqrt{\frac{h_0-\Lambda _1}{2\Lambda _1}}e^{\Omega _1(y,t)}+\mu _2 \sqrt{\frac{h_0+\Lambda _1}{2\Lambda _1}}e^{-\Omega _1(y,t)}\right) , \end{aligned} \end{aligned}$$

where \(\mu _k\) are positive constants. Ignoring an irrelevant overall constant of \(\sqrt{\mu _1 \mu _2}(2\Lambda _1)^{-1/2}\) (see Sect. 4.3) and changing the definition of \(\Omega _1(y,t)\) by an additive constant, as given by

$$\begin{aligned} \Omega _1(y,t)=\Lambda _{1}\left( y-\frac{t}{2h_0}\left( u_0+\frac{1}{2\omega _1^2}\right) \right) + \ln \sqrt{\frac{\mu _1}{\mu _2}}, \end{aligned}$$
(7.6)

we obtain the simplified expressions

$$\begin{aligned} \begin{aligned} m_1&=\sqrt{h_0+\Lambda _1}e^{\Omega _1(y,t)}+\sqrt{h_0-\Lambda _1}e^{-\Omega _1(y,t)},\\ m_2&=i\left( \sqrt{h_0-\Lambda _1}e^{\Omega _1(y,t)}+\sqrt{h_0+\Lambda _1}e^{-\Omega _1(y,t)}\right) . \end{aligned} \end{aligned}$$
(7.7)

Similarly, as per the cuspon solution, we define the constant vector \(\left\langle {M_{(0)}}\right| V_2= (\nu _1, \nu _2)\) with \(\nu _1, \nu _2\) real and positive, thereby ensuring

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}M_1=\sqrt{\Lambda _2+h_0}e^{\Omega _2(y,t)}-\sqrt{\Lambda _2-h_0}e^{-\Omega _2(y,t)},\\ &{}M_2=\sqrt{\Lambda _2-h_0}e^{\Omega _2(y,t)}+\sqrt{\Lambda _2+h_0}e^{-\Omega _2(y,t)},\\ &{}\Omega _2(y,t)=\Lambda _{2}\left( y-\frac{t}{2h_0}\left( u_0-\frac{1}{2\lambda _2^2}\right) \right) + \ln \sqrt{\frac{\nu _1}{\nu _2}} , \\ &{}\Lambda _2=\sqrt{h_0^2+\lambda _2^2}. \end{array}\right. } \end{aligned}$$
(7.8)

The expression

$$\begin{aligned} g_{22}=\frac{i\omega _1 M_2 m_1-\lambda _2 M_1 m_2}{i\omega _1 M_1 m_2 -\lambda _2 M_2 m_1}=\frac{\mathcal {T}_{CS}}{\mathcal {B}_{CS}}, \end{aligned}$$
(7.9)

whose explicit form may be deduced from Eqs. (7.7)–(7.8), has denominator

$$\begin{aligned} \begin{aligned} \mathcal {B}_{CS}=&-\omega _1 \lambda _2 \left( \frac{\Lambda _2 - \Lambda _1}{\sqrt{(h_0-\Lambda _1)(\Lambda _2-h_0)}}e^{\Omega _1+\Omega _2}+ \frac{\Lambda _2 - \Lambda _1}{\sqrt{(h_0+\Lambda _1)(\Lambda _2+h_0)}}e^{-\Omega _1-\Omega _2} \right. \\&\quad + \left. \frac{\Lambda _1 + \Lambda _2}{\sqrt{(h_0-\Lambda _1)(\Lambda _2+h_0)}}e^{\Omega _1-\Omega _2} + \frac{\Lambda _1 + \Lambda _2}{\sqrt{(h_0+\Lambda _1)(\Lambda _2-h_0)}}e^{-\Omega _1+\Omega _2} \right) , \end{aligned} \end{aligned}$$
(7.10)

where we note that \(\Lambda _2> h_0 > \Lambda _1\), thus ensuring \(\Lambda _2 - \Lambda _1 >0\).

Introducing the constants

$$\begin{aligned} n_1=\root 4 \of {\frac{h_0+\Lambda _1}{h_0-\Lambda _1}},\qquad n_2=\root 4 \of {\frac{\Lambda _2+h_0}{\Lambda _2-h_0}}, \end{aligned}$$
(7.11)

we rewrite this denominator according to

$$\begin{aligned} \mathcal {B}_{CS}= & {} -\sqrt{\omega _1 \lambda _2} (\Lambda _1^2-\Lambda _1^2) \nonumber \\&\times \left( n_1 n_2\frac{e^{\Omega _1+\Omega _2}}{\Lambda _1+\Lambda _2} +\frac{1}{n_1 n_2}\frac{e^{-\Omega _1-\Omega _2}}{\Lambda _1+\Lambda _2} +\frac{n_1}{n_2}\frac{e^{\Omega _1-\Omega _2}}{\Lambda _2-\Lambda _1}+ \frac{n_2}{n_1}\frac{e^{-\Omega _1+\Omega _2}}{\Lambda _2-\Lambda _1} \right) .\nonumber \\ \end{aligned}$$
(7.12)

Similarly, it is found that the numerator assumes the form

$$\begin{aligned} \mathcal {T}_{CS}= & {} i\sqrt{\omega _1 \lambda _2} (\Lambda _1^2-\Lambda _2^2)\nonumber \\&\times \left( \frac{1}{n_1 n_2}\frac{e^{\Omega _1+\Omega _2}}{\Lambda _1+\Lambda _2} -n_1 n_2\frac{e^{-\Omega _1-\Omega _2}}{\Lambda _1+\Lambda _2} -\frac{n_2}{n_1}\frac{e^{\Omega _1-\Omega _2}}{\Lambda _2-\Lambda _1}+ \frac{n_1}{n_2}\frac{e^{-\Omega _1+\Omega _2}}{\Lambda _2-\Lambda _1} \right) .\nonumber \\ \end{aligned}$$
(7.13)

As with the two-cuspon solutions, we seek a solution of Eq. (4.32) in the form of Eq. (4.13) with

$$\begin{aligned} \mathcal {A}_{CS}=\alpha _1 e^{\Omega _1+\Omega _2}+\alpha _2 e^{-\Omega _1-\Omega _2}+\alpha _3 e^{\Omega _1-\Omega _2}+\alpha _4 e^{-\Omega _1+\Omega _2}, \end{aligned}$$
(7.14)

where the constants \(\left\{ \alpha _l\right\} _{l=1}^{4}\) are as yet unknown. Equation (4.32) ensures that

$$\begin{aligned} 2h_0\mathcal {A}_{CS}\mathcal {B}_{CS}+\mathcal {B}_{CS}\partial _y\mathcal {A}_{CS}-\mathcal {A}_{CS}\partial _y\mathcal {A}_{CS}=2h_0\mathcal {T}_{CS}^2 \end{aligned}$$
(7.15)

has a solution given by

$$\begin{aligned} \mathcal {A}_{CS}= & {} \sqrt{\omega _1 \lambda _2} (\Lambda _2^2-\Lambda _1^2)\nonumber \\&\times \left( \frac{1}{n_1^3 n_2^3}\frac{e^{\Omega _1+\Omega _2}}{\Lambda _1+\Lambda _2}+n_1^3 n_2^3\frac{e^{-\Omega _1-\Omega _2}}{\Lambda _1+\Lambda _2} +\frac{n_2^3}{n_1^3}\frac{e^{\Omega _1-\Omega _2}}{\Lambda _2-\Lambda _1}+ \frac{n_1^3}{n_2^3}\frac{e^{-\Omega _1+\Omega _2}}{\Lambda _2-\Lambda _1} \right) .\nonumber \\ \end{aligned}$$
(7.16)

The ratio \(\mathcal {A}_{CS}/\mathcal {B}_{CS}\) may now be written as

$$\begin{aligned} \frac{\mathcal {A}_{CS}}{\mathcal {B}_{CS}}=n_1^4 n_2^4\frac{1+ \frac{1}{n_1^6 }\frac{\Lambda _1+\Lambda _2}{\Lambda _2-\Lambda _1}e^{2\Omega _1}+ \frac{1}{n_2^6 }\frac{\Lambda _1+\Lambda _2}{\Lambda _2-\Lambda _1}e^{2\Omega _2} +\frac{e^{2\Omega _1+2\Omega _2}}{n_1^6n_2^6} }{1+ n_1^2\frac{\Lambda _1+\Lambda _2}{\Lambda _2-\Lambda _1}e^{2\Omega _1}+ n_2^2 \frac{\Lambda _1+\Lambda _2}{\Lambda _2-\Lambda _1}e^{2\Omega _2}+ n_1^2n_2^2e^{2\Omega _1+2\Omega _2} } \end{aligned}$$
(7.17)

which we simplify by means of the following re-definitions:

$$\begin{aligned} \begin{aligned} \Omega _1(y,t)&=\Lambda _{1}\left( y-\frac{t}{2h_0}\left( u_0+\frac{1}{2\omega _1^2}\right) \right) + \ln \sqrt{\frac{\mu _1}{\mu _2}}-\ln n_1 + \frac{1}{2}\ln \frac{\Lambda _1+\Lambda _2}{b}{\Lambda _2 - \Lambda _1},\\ \Omega _2(y,t)&=\Lambda _{2}\left( y-\frac{t}{2h_0}\left( u_0-\frac{1}{2\lambda _2^2}\right) \right) + \ln \sqrt{\frac{\nu _1}{\nu _2}}-\ln n_2 + \frac{1}{2}\ln \frac{\Lambda _1+\Lambda _2}{\Lambda _2 - \Lambda _1}. \end{aligned} \end{aligned}$$
(7.18)

These re-definitions are valid since \(\Lambda _2> \Lambda _1\), as was previously noted. Alternatively, these may be simply written as

$$\begin{aligned} {\begin{matrix} \Omega _1(y,t)&{}=\Lambda _{1}\left( y-\frac{t}{2h_0}\left( u_0+\frac{1}{2\omega _1^2}\right) \right) +\xi _1\\ \Omega _2(y,t)&{}=\Lambda _{2}\left( y-\frac{t}{2h_0}\left( u_0-\frac{1}{2\lambda _2^2}\right) \right) +\xi _2 \end{matrix}} \end{aligned}$$
(7.19)

for some constants \(\left\{ \xi _k\right\} _{k=1}^{2}\) related to the initial separation of the cuspon and soliton. This allows the expression (7.17) to be written as

$$\begin{aligned} \frac{\mathcal {A}_{CS}}{\mathcal {B}_{CS}}=n_1^4 n_2^4\frac{1+ \frac{1}{n_1^4 }e^{2\Omega _1}+ \frac{1}{n_2^4 }e^{2\Omega _2} +\left( \frac{\Lambda _1-\Lambda _2}{\Lambda _1+\Lambda _2}\right) ^2\frac{e^{2\Omega _1+2\Omega _2}}{n_1^4n_2^4} }{1+ n_1^4e^{2\Omega _1}+ n_2^4e^{2\Omega _2} + \left( \frac{\Lambda _1-\Lambda _2}{\Lambda _1+\Lambda _2}\right) ^2n_1^4n_2^4e^{2\Omega _1+2\Omega _2} } \end{aligned}$$
(7.20)

with

$$\begin{aligned} X(y,t)=\frac{y}{\sqrt{u_0}}+u_0t+\ln \left| \frac{\mathcal {A}_{CS}}{\mathcal {B}_{CS}}\right| . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, R., Lyons, T. & Orr, N. Camassa–Holm Cuspons, Solitons and Their Interactions via the Dressing Method. J Nonlinear Sci 30, 225–260 (2020). https://doi.org/10.1007/s00332-019-09572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09572-1

Mathematics Subject Classification

Navigation