Skip to main content
Log in

Computing the distance to continuous-time instability of quadratic matrix polynomials

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A bisection method is used to compute lower and upper bounds on the distance from a quadratic matrix polynomial to the set of quadratic matrix polynomials having an eigenvalue on the imaginary axis. Each bisection step requires to check whether an even quadratic matrix polynomial has a purely imaginary eigenvalue. First, an upper bound is obtained using Frobenius-type linearizations. It takes into account rounding errors but does not use the even structure. Then, lower and upper bounds are obtained by reducing the quadratic matrix polynomial to a linear palindromic pencil. The bounds obtained this way also take into account rounding errors. Numerical illustrations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, S., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. Trans. Math. Softw. 39, 7:1–7:28 (2013)

    Article  MathSciNet  Google Scholar 

  2. Boyd, S., Balakrishnan, V.: A regularity result for the singular values of a transfer function matrix and a quadratically convergent algorithm for computing its \(L_{\infty }\)-norm. Syst. Control Lett. 15, 1–7 (1990)

    Article  Google Scholar 

  3. Bruinsma, N.A., Steinbuch, M.: A fast algorithm to compute the \(H_{\infty }\)-norm of a transfer function matrix. Syst. Control Lett. 14, 287–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Byers, R.: A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J. Sci. Stat. Comput. 9, 875–881 (1988)

    Article  MathSciNet  Google Scholar 

  5. Freitag, M., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435, 3189–3205 (2011)

    Article  MathSciNet  Google Scholar 

  6. Genin, Y., Stefan, R., Van Dooren, P.: Real and complex stability radii of polynomial matrices. Linear Algebra Appl. 351–352, 381–410 (2002)

    Article  MathSciNet  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  8. Higham, N.J., Tisseur, F., Van Dooren, P.M.: Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351–352, 455–474 (2002)

    Article  MathSciNet  Google Scholar 

  9. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986)

    Article  MathSciNet  Google Scholar 

  10. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Springer, Berlin (2005)

    Book  Google Scholar 

  11. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MathSciNet  Google Scholar 

  12. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MathSciNet  Google Scholar 

  13. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form. Numer. Linear Algebra Appl. 16, 63–86 (2009)

    Article  MathSciNet  Google Scholar 

  14. Malyshev, A., Sadkane, M.: A bisection method for measuring the distance of a quadratic matrix polynomial to the quadratic matrix polynomials that are singular on the unit circle. BIT Numer. Math. 54, 189–200 (2014)

    Article  MathSciNet  Google Scholar 

  15. Malyshev, A., Sadkane, M.: On the computation of the distance to quadratic matrix polynomials that are singular at some points on the unit circle. Electron. Trans. Numer. Anal. 42, 165–176 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Mengi, E.: Measures for robust stability and controllability. Ph.D. Thesis, New York University (2006)

  17. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)

    Article  MathSciNet  Google Scholar 

  18. Pappas, G., Hinrichsen, D.: Robust stability of linear systems described by higher order dynamic equations. IEEE Trans. Autom. Control 38, 1430–1435 (1993)

    Article  MathSciNet  Google Scholar 

  19. Schröder, C.: Palindromic and even eigenvalue problems—analysis and numerical methods. Ph.D. thesis, Technischen Universität Berlin (2008)

  20. Stewart, G.W., Sun, J.-G.: Matrix Perturbation Theory. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  21. Van Loan, C.F.: How near is a stable matrix to an unstable matrix. Contemp. Math. 47, 465–477 (1985)

    Article  MathSciNet  Google Scholar 

  22. Verhees, D., Van Beeumen, R., Meerbergen, K., Guglielmi, N., Micheils, W.: Fast algorithms for computing the distance to instability of nonlinear eigenvalue problems, with application to time-delay systems. Int. J. Dyn. Control 2, 133–142 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their criticism and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloud Sadkane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, A., Sadkane, M. Computing the distance to continuous-time instability of quadratic matrix polynomials. Numer. Math. 145, 149–165 (2020). https://doi.org/10.1007/s00211-020-01108-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01108-0

Mathematics Subject Classification

Navigation