Skip to main content
Log in

The multiscale hybrid mixed method in general polygonal meshes

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work extends the general form of the multiscale hybrid-mixed (MHM) method for the second-order Laplace (Darcy) equation to general non-conforming polygonal meshes. The main properties of the MHM method, i.e., stability, optimal convergence, and local conservation, are proven independently of the geometry of the elements used for the first level mesh. More precisely, it is proven that piecewise polynomials of degree k and \(k+1\), \(k \ge 0\), for the Lagrange multipliers (flux), along with continuous piecewise polynomial interpolations of degree \(k+1\) posed on second-level sub-meshes are stable if the latter is fine enough with respect to the mesh for the Lagrange multiplier. We provide an explicit sufficient condition for this restriction. Also, we prove that the error converges with order \(k+1\) and \(k+2\) in the broken \(H^1\) and \(L^2\) norms, respectively, under usual regularity assumptions, and that such estimates also hold for non-convex; or even non-simply connected elements. Numerical results confirm the theoretical findings and illustrate the gain that the use of multiscale functions provides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Achdou, Y., Japhet, C., Maday, Y., Nataf, F.: A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case. Numer. Math. 92(4), 593–620 (2002)

    Article  MathSciNet  Google Scholar 

  2. Araya, R., Harder, C., Paredes, D., Valentin, F.: Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51(6), 3505–3531 (2013)

    Article  MathSciNet  Google Scholar 

  3. Araya, R., Harder, C., Poza, A., Valentin, F.: Multiscale hybrid-mixed method for the Stokes and Brinkman equations—the method. Comput. Methods Appl. Mech. Eng. 324, 29–53 (2017)

    Article  MathSciNet  Google Scholar 

  4. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6, 319–346 (2007)

    Article  MathSciNet  Google Scholar 

  5. Babuska, I., Osborn, E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20(3), 510–536 (1983)

    Article  MathSciNet  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  Google Scholar 

  7. Beirao da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cangiani, A., Dong, E.H., Georgoulis, A., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer, Berlin (2017)

    Book  Google Scholar 

  9. Cangiani, A., Georgoulis, E., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Di Pietro, D., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  12. Coutinho, A.L.G.A., Franca, L.P., Valentin, F.: Numerical multiscale methods. Int. J. Numer. Methods Fluids 70(4), 403–419 (2012)

    Article  MathSciNet  Google Scholar 

  13. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Revue française d’automatique, informatique, recherche opérationnelle. Mathématique 7(3), 33–75 (1973)

    Article  MathSciNet  Google Scholar 

  14. Di Pietro, D.A., Droniou, J.: A hybrid high-order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017)

    Article  MathSciNet  Google Scholar 

  15. Duran, O., Devloo, P.R.B., Gomes, A.T.A., Valentin, F.: A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. Technical report HAL-01868853, INRIA (2018)

  16. E, W., Engquist, B.: The heterogeneous multi-scale methods. Commun. Math. Sci. 1, 87–133 (2003)

  17. Efendiev, Y.R., Hou, T.Y., Wu, X.H.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37(3), 888–910 (2000)

    Article  MathSciNet  Google Scholar 

  18. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Alements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  19. Ern, A., Pietro, D.D.A.: Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2017)

    Article  MathSciNet  Google Scholar 

  20. Farhat, C., Harari, I., Franca, L.P.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190(48), 6455–6479 (2001)

    Article  MathSciNet  Google Scholar 

  21. Farhat, C., Mandel, J., Roux, F.-X.: Optimal convergence properties of the FETI domain decomposition method. Commun. Numer. Methods Eng. 115, 365–385 (1994)

    MathSciNet  Google Scholar 

  22. Gander, M.J., Japhet, C., Maday, Y., Nataf, F.: A new cement to glue nonconforming grids with Robin interface conditions: the finite element case. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O.B. (eds.) Domain Decomposition Methods in Science and Engineering. Volume 40 of Lecture Notes in Computational Science and Engineering, pp. 259–266. Springer, Berlin (2005)

    Chapter  Google Scholar 

  23. Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: Glowinski, R., Golub, G.H., Meurant, G.A., Périaux, J. (eds.) First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172. SIAM, Philadelphia (1988)

  24. Grisvard, P.: Elliptic Problems in Non-smooth Domains. Pitman Publishing, London (1985)

    MATH  Google Scholar 

  25. Harder, C., Madureira, A.L., Valentin, F.: A hybrid-mixed method for elasticity. ESAIM Math. Model. Numer. Anal. 50(2), 311–336 (2016)

    Article  MathSciNet  Google Scholar 

  26. Harder, C., Paredes, D., Valentin, F.: A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J. Comput. Phys. 245, 107–130 (2013)

    Article  MathSciNet  Google Scholar 

  27. Harder, C., Paredes, D., Valentin, F.: On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients. SIAM Multiscale Model. Simul. 13(2), 491–518 (2015)

    Article  MathSciNet  Google Scholar 

  28. Harder, C., Valentin, F.: Foundations of the MHM method. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2016)

    Google Scholar 

  29. Hou, T.Y., Wu, X., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68(227), 913–943 (1999)

    Article  MathSciNet  Google Scholar 

  30. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)

    Article  MathSciNet  Google Scholar 

  31. Lanteri, S., Paredes, D., Scheid, C., Valentin, F.: The multiscale hybrid-mixed method for the Maxwell equations in heterogeneous media. SIAM Multiscale Model. Simul. 16(4), 1648–1683 (2018)

    Article  MathSciNet  Google Scholar 

  32. Malqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583–2603 (2014)

    Article  MathSciNet  Google Scholar 

  33. Paredes, D., Valentin, F., Versieux, H.M.: On the robustness of multiscale hybrid-mixed methods. Math. Comput. 86(304), 525–548 (2017)

    Article  MathSciNet  Google Scholar 

  34. Raviart, P.A., Thomas, J.M.: Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31(138), 391–413 (1977)

    MATH  Google Scholar 

  35. Sangalli, G.: Capturing small scales in elliptic problems using a residual-free bubbles finite element method. SIAM Multiscale Model. Simul. 1(3), 485–503 (2003)

    Article  MathSciNet  Google Scholar 

  36. Veeser, A., Verfurth, R.: Poincaré constants for finite element stars. IMA J. Numer. Anal. 32(1), 30–47 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zheng, W., Qi, H.: On Friedrichs–Poincaré-type inequalities. J. Math. Anal. Appl. 304(2), 542–551 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Funding

GRB’s work is funded by the Leverhulme Trust through the Research Fellowship No. RF-2019-510. The third author was supported by FONDECYT Project 1181572. The fourth author was partially supported by CNPq/Brazil No. 301576/2013-0, EU H2020 Program and from MCTI/RNP-Brazil under the HPC4E Project, Grant Agreement No. 689772, and by CAPES/Brazil No. 88881.143295/2017-01 under the PHOTOM Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Valentin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 4

Let \(k\ge 0\), and let us define the following space

$$\begin{aligned} \mathscr {X}=\left\{ q\in H^1_0(0,1): q|_{(0,0.5)}^{}\in \mathbb {P}_{k+1}^{}\left( 0,0.5\right) \;\text {and}\; q|_{(0.5,1)}^{}\in \mathbb {P}_{k+1}^{}\left( 0.5,1\right) \right\} . \end{aligned}$$

Then, if \(\mu \) satisfies

$$\begin{aligned} \mu \in \mathbb {P}_{k}^{}(0,1) \;\text {and}\;\int _0^1\mu (x)q(x)dx=0\quad \text {for all }q\in \mathscr {X}, \end{aligned}$$
(101)

then \(\mu =0\) in [0, 1].

Proof

The case \(k=0\) will be treated first. For \(k=0\) let

$$\begin{aligned} q(x)=\left\{ \begin{array}{ll} x &{} \quad \text {if}\; x\le 0.5 \\ 1-x &{} \quad \text {if}\; x > 0.5\end{array}\right. . \end{aligned}$$

Then, \(q\in \mathscr {X}\). Thus, if \(\mu \in \mathbb {R}{\setminus }\{0\}\), then

$$\begin{aligned} \int _0^1\mu q(x)dx = \mu \int _0^1q(x)dx =\frac{\mu }{4}\not = 0, \end{aligned}$$

which contradicts the hypothesis.

Now, let \(k\ge 1\), and let \(\mu \in \mathbb {P}_{k}^{}(0,1)\) satisfying (101). Let \(q_1^{},q_2^{}\in \mathscr {X}\) be defined by

$$\begin{aligned} q_1^{}(x)=\left\{ \begin{array}{ll} x(0.5-x) &{} \quad \text {if}\; x\le 0.5 \\ 0 &{} \quad \text {if}\; x> 0.5\end{array}\right. ,\quad q_2^{}(x)=\left\{ \begin{array}{ll} 0 &{} \quad \text {if}\; x\le 0.5 \\ (x-0.5)(1-x) &{} \quad \text {if}\; x > 0.5\end{array}\right. . \end{aligned}$$
(102)

Since

$$\begin{aligned} \int _0^1\mu (x)q_1(x)dx=\int _0^{0.5} \mu (x)x(0.5-x)\,dx=0, \end{aligned}$$
(103)

and \(q_1^{}(x)\ge 0\) in (0, 0.5), then \(\mu \) changes sign in (0, 0.5), which implies that \(\mu \) has at least one root \(x_1^{}\in (0,0.5)\). Analogously, since

$$\begin{aligned} \int _0^1\mu (x)q_2(x)dx=\int _{0.5}^{1} \mu (x)(x-0.5)(1-x)\,dx=0, \end{aligned}$$
(104)

then \(\mu \) has also a root \(x_2^{}\in (0.5,1)\). So, if \(k=1\), then \(\mu \in \mathbb {P}_{1}^{}(0,1)\) has two roots in (0, 1), and thus it needs to be identically zero. If \(k\ge 2\), we define the following functions in \(\mathscr {X}\):

$$\begin{aligned} q_3^{}(x)=q_1^{}(x)(x-x_1^{})\quad \text {and}\quad q_4^{}(x)=q_2^{}(x)(x-x_2^{}). \end{aligned}$$
(105)

If \(\mu \) does not have any other root in (0, 0.5), then, since \(\mu \) and \(q_3^{}\) change signs at the exact same points in (0, 0.5), then

$$\begin{aligned} \int _0^1\mu (x)q_3^{}(x)dx=\int _0^{0.5}\mu (x)q_3^{}(x)\,dx\not =0, \end{aligned}$$
(106)

which contradicts (101). In an analogous way, using the function \(q_4^{}\), we deduce the existence of a fourth root \(x_4^{}\in (0.5,1)\). If \(k=3\), then \(\mu \) is a quadratic polynomial with four distinct roots in (0, 1), and then it needs to be identically zero.

For \(k\ge 3\), following completely analogous steps to the ones just described, we deduce that \(\mu \) needs to vanish at, at least, \(2(k+1)-2\) different points in (0, 1), which, for a polynomial \(\mu \in \mathbb {P}_{k}^{}(0,1)\), is impossible unless \(\mu =0\). This finishes the proof. \(\square \)

The following result extends the previous result to the \(\mathbb {P}_{k+1}^{}(F)\times \mathbb {P}_{k+1}^{}(\mathfrak {T})\) case.

Lemma 5

Let \(k\ge 0\). Then, if \(\mu \) satisfies

$$\begin{aligned} \mu \in \mathbb {P}_{k+1}^{}(0,1)\; \text {and}\;\int _0^1\mu (x)q(x)\,dx=0\quad \text {for all }q\in \mathscr {X}, \end{aligned}$$
(107)

then \(\mu =0\) in [0, 1], where the space \(\mathscr {X}\) is defined as:

  • For \(k=0\):

    $$\begin{aligned}&\mathscr {X}=\left\{ q\in H^1_0(0,1): \text {the restriction of }\;q\;\text {to}\;(0,1/4),(1/4,1/2),(1/2,3/4), \right. \\&\quad \,\,\quad \qquad \left. \text {and} \;(3/4,1)\;\text {belongs to}\; \mathbb {P}_1^{}\right\} . \end{aligned}$$
  • For \(k=1\):

    $$\begin{aligned}&\mathscr {X} = \left\{ q\in H^1_0(0,1): \text {the restriction of }\;q\;\text {to}\;(0,1/3),(1/3,2/3), \right. \\&\quad \,\,\quad \qquad \left. \text {and} \;(2/3,1)\;\text {belongs to}\; \mathbb {P}_2^{}\right\} . \end{aligned}$$
  • For \(k\ge 2\):

    $$\begin{aligned} \mathscr {X}=\left\{ q\in H^1_0(0,1): q|_{(0,0.5)}^{}\in \mathbb {P}_{k+1}^{}\left( 0,0.5\right) \;\text {and}\; q|_{(0.5,1)}^{}\in \mathbb {P}_{k+1}^{}\left( 0.5,1\right) \right\} . \end{aligned}$$

Proof

We split the proof in the three cases described above:

\({k=0}\): Let \(\mu \in \mathbb {P}_1^{}(0,1)\) satisfying (101), and let \(\ell _1^{},\ell _2^{}\in \mathscr {X}\) be defined as follows:

$$\begin{aligned} \ell _1^{}(x)=\left\{ \begin{array}{ll} x &{} \quad \text {if}\; x\le 0.25 \\ 0.25-x &{} \quad \text {if}\; 0.25 \le x\le 0.5 \\ 0 &{} \quad \text {if}\; 0.5\le x \end{array}\right. ,\quad \ell _2^{}(x)=\left\{ \begin{array}{ll} 0 &{} \quad \text {if}\; x\le 0.5 \\ x-0.5 &{} \quad \text {if}\; 0.5 \le x\le 0.75 \\ 1-x &{} \quad \text {if}\; 0.75\le x \end{array}\right. . \end{aligned}$$
(108)

Since \(\mu \) satisfies (101) then

$$\begin{aligned} \int _0^1\mu (x)\ell _1^{}(x)\,dx=\int _0^{0.5} \mu (x)\ell _1^{}(x)\,dx=0, \end{aligned}$$
(109)

which implies that \(\mu \) has a root in (0, 0.5) since \(\ell _1^{}\) is positive in that interval. Analogously, since

$$\begin{aligned} \int _0^1\mu (x)\ell _2^{}(x)\,dx=\int _{0.5}^{1} \mu (x)\ell _2^{}(x)\,dx=0, \end{aligned}$$
(110)

and \(\ell _2^{}\) is positive in (0.5, 1), we deduce that \(\mu \) has a root also in (0.5, 1). Since \(\mu \in \mathbb {P}_1^{}(0,1)\) and has two different roots in (0, 1), then it is identically zero.

\({k=1}:\) Let \(\mu \in \mathbb {P}_2^{}(0,1)\) satisfying (101), and let \(\ell _3^{},\ell _4^{}, \ell _5^{}\in \mathscr {X}\) be defined as follows:

$$\begin{aligned}&\ell _3^{}(x)=\left\{ \begin{array}{ll} x(1/3-x) &{} \quad \text {if}\; x\le 1/3 \\ 0 &{} \quad \text {if}\; 1/3\le x \end{array}\right. ,\quad \ell _4^{}(x)=\left\{ \begin{array}{ll} (x-1/3)(2/3-x) &{} \quad \text {if}\; 1/3 \le x\le 2/3 \\ 0 &{} \quad \text {else} \end{array}\right. \\&\ell _5^{}(x)=\left\{ \begin{array}{ll} 0 &{} \quad \text {if}\; x\le 2/3 \\ (x-2/3)(1-x) &{} \quad \text {if}\; 2/3\le x \end{array}\right. . \end{aligned}$$

Since \(\mu \) satisfies (101) then

$$\begin{aligned} \int _0^1\mu (x)\ell _3^{}(x)\,dx=\int _0^{1/3} \mu (x)x(1/3-x)\,dx=0, \end{aligned}$$
(111)

which, due to the positivity of \(\ell _3^{}\) implies the existence of \(x_1^{}\in (0,1/3)\) such that \(\mu (x_1^{})=0\). In a completely analogous way, we deduce there exist \(x_2^{}\in (1/3,2/3)\) and \(x_3^{}\in (2/3,1)\) such that \(\mu (x_2^{})=\mu (x_3^{})=0\). Thus, \(\mu \) must necessarily vanish.

\({k\ge 2}\): From the proof of Lemma 4, any function \(\mu \) that satisfies (107) has at least 2k different roots in (0, 1). Now, for \(k\ge 2\), \(2 k \ge k+2\), and thus, if \(\mu \in \mathbb {P}_{k+1}^{}(0,1)\) satisfies (107) it will vanish at at least \(k+2\) different points in (0, 1), which implies that \(\mu \) is identically zero. This finishes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrenechea, G.R., Jaillet, F., Paredes, D. et al. The multiscale hybrid mixed method in general polygonal meshes. Numer. Math. 145, 197–237 (2020). https://doi.org/10.1007/s00211-020-01103-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01103-5

Mathematics Subject Classification

Navigation