Skip to main content
Log in

The Steklov eigenvalue problem in a cuspidal domain

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we analyze the approximation, by piecewise linear finite elements, of a Steklov eigenvalue problem in a plane domain with an external cusp. This problem is not covered by the literature and its analysis requires a special treatment. Indeed, we develop new trace theorems and we also obtain regularity results for the source counterpart. Moreover, under appropriate assumptions on the meshes, we present interpolation error estimates for functions in fractional Sobolev spaces. These estimates allow us to obtain appropriate convergence results of the source counterpart which, in the context of the theory of compact operator, are a fundamental tool in order to prove the convergence of the eigenpairs. At the end, we prove the convergence of the eigenpairs by using graded meshes and present some numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acosta, G., Armentano, M.G.: Finite element approximations in a non-Lipschitz domain: part II. Math. Comput. 80(276), 1949–1978 (2011)

    Article  MathSciNet  Google Scholar 

  2. Acosta, G., Armentano, M.G.: Eigenvalue problems in a non-Lipschitz domain. IMA J. Numer. Anal. 34(1), 83–95 (2014)

    Article  MathSciNet  Google Scholar 

  3. Acosta, G., Armentano, M.G., Durán, R.G., Lombardi, A.L.: Nonhomogeneous Neumann problem for the Poisson equation in domains with an external cusp. J. Math. Anal. Appl. 310, 397–411 (2005)

    Article  MathSciNet  Google Scholar 

  4. Acosta, G., Armentano, M.G., Durán, R.G., Lombardi, A.L.: Finite element approximations in a non-Lipschitz domain. SIAM J. Numer. Anal. 45(1), 277–295 (2007)

    Article  MathSciNet  Google Scholar 

  5. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Andreev, A.B., Todorov, T.D.: Isoparametric finie-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24, 309–322 (2004)

    Article  MathSciNet  Google Scholar 

  7. Armentano, M.G.: The effect of reduced integration in the Steklov eigenvalue problem. Math. Mod. Numer. Anal. M2AN 38(1), 27–36 (2004)

    Article  MathSciNet  Google Scholar 

  8. Armentano, M.G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58(5), 593–601 (2008)

    Article  MathSciNet  Google Scholar 

  9. Armentano, M.G., Padra, C., Rodriguez, R., Scheble, M.: An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations. Comput. Methods Appl. Mech. Eng. 200, 178–188 (2011)

    Article  MathSciNet  Google Scholar 

  10. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. 2, pp. 641–787. Elsevier (1991). https://doi.org/10.1016/S1570-8659(05)80042-0

  11. Bermúdez, A., Rodríguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid–solid vibrations. Numer. Math. 87, 201–227 (2000)

    Article  MathSciNet  Google Scholar 

  12. Boffi, D.: Finite element aproximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    Article  MathSciNet  Google Scholar 

  13. Brewster, K., Mitrea, M.: Boundary value problems in weighted Sobolev spaces on Lipschitz manifolds. Mem. Differ. Equ. Math. Phys. 60, 15–55 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Canavati, J., Minsoni, A.: A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69, 540–558 (1979)

    Article  MathSciNet  Google Scholar 

  15. Dupont, T., Scott, R.: Polynomial approximations of functions in Sobolev spaces. Math. Comput. 34, 441–463 (1980)

    Article  MathSciNet  Google Scholar 

  16. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem. J. Spectr. Theory 7, 321–359 (2017)

    Article  MathSciNet  Google Scholar 

  17. Grisvard, P.: Elliptic Problems in Nonsmooth Domain. Pitman, Boston (1985)

    MATH  Google Scholar 

  18. Kim, D.: Elliptic equations with nonzero boundary conditions in weighted Sobolev spaces. J. Math. Anal. Appl. 337, 1465–1479 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kozlov, V., Kuznetsov, N., Motygin, O.: On the two-dimensional sloshing problem. Proc. R. Soc. Lond. A 460, 2587–2603 (2004)

    Article  MathSciNet  Google Scholar 

  20. Lions, J.L., Magenes, E.: Problémes aux limites non homogénes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  21. Maz’ya, V.G., Poborchi, S.V.: Differentiable Functions on Bad Domains. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  22. Nazarov, S.A., Sokolowski, J., Taskinen, J.: Neumann Laplacian on a domain with tangential components in the boundary. Ann. Acad. Sci. Fenn. Math. 34(1), 131–143 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Osborn, J.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)

    Article  MathSciNet  Google Scholar 

  24. Raugel, G.: Résolution numérique par une méthode d’éléments finis du problème Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Ser. A 286, A791–A794 (1978)

    MATH  Google Scholar 

  25. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  26. Weinberger, H.F.: Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974)

    Book  Google Scholar 

Download references

Acknowledgements

This work was partially supported by ANPCyT under Grant PICT 2014-1771 and by CONICET under Grant PIP (2014-2016) 11220130100184CO. MGA was also supported by Universidad de Buenos Aires under Grant 20020130100205BA. ALL was also supported by Universidad de Buenos Aires under Grant 20020120100050BA and by Universidad Nacional de Rosario under Grant ING568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Armentano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armentano, M.G., Lombardi, A.L. The Steklov eigenvalue problem in a cuspidal domain. Numer. Math. 144, 237–270 (2020). https://doi.org/10.1007/s00211-019-01092-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01092-0

Mathematics Subject Classification

Navigation