Skip to main content
Log in

Quantitative Immersability of Riemann Metrics and the Infinite Hierarchy of Prestrained Shell Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We propose results that relate the following two contexts:

  1. (i)

    Given a Riemann metric G on \(\Omega ^1=\omega \times (-\frac{1}{2}, \frac{1}{2})\), we find the infimum of the averaged pointwise deficit of an immersion from attaining the orientation-preserving isometric immersion of \(G_{\mid \Omega ^h}\) on \(\Omega ^h=\omega \times (-\frac{h}{2}, \frac{h}{2})\), over all weakly regular immersions. This deficit is measured by the non-Euclidean energies \({\mathcal {E}}^h\), which can be seen as modifications of the classical nonlinear three-dimensional elasticity.

  2. (ii)

    We complete the scaling analysis of \({\mathcal {E}}^h\) in the context of dimension reduction as \(h\rightarrow 0\), and the derivation of \(\Gamma \)-limits of the scaled energies \(h^{-2n}{\mathcal {E}}^h\) for all \(n\geqq 1\). We show the energy quantisation, in the sense that the even powers 2n of h are indeed the only possible ones (all of them are also attained).

For each n, we identify conditions for the validity of the scaling \(h^{2n}\), in terms of the vanishing of Riemann curvatures of G up to appropriate orders, and in terms of the matched isometry expansions. We also establish the asymptotic behaviour of the minimizing immersions as \(h\rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bella, P., Kohn, R.V.: Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24, 1147–1176, 2014

    Google Scholar 

  2. Bella, P., Kohn, R.V.: The coarsening of folds in hanging drapes. Commun. Pure Appl. Math. 70(5), 978–2012, 2017

    Google Scholar 

  3. Ben Belgacem, H., Conti, S., DeSimone, A., Muller, S.: Rigorous bounds for the Foppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10, 661–683, 2000

    Google Scholar 

  4. Ben Belgacem, H., Conti, S., DeSimone, A., Muller, S.: Energy scaling of compressed elastic films-three-dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164(1), 1–37, 2002

    Google Scholar 

  5. Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1–48, 2008

    Google Scholar 

  6. Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221, 143–181, 2016

    Google Scholar 

  7. Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids57, 762–775, 2009

    Google Scholar 

  8. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506, 2002

    Google Scholar 

  9. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236, 2006

    Google Scholar 

  10. Gemmer, J., Venkataramani, S.: Shape selection in non-Euclidean plates. Phys. D Nonlinear Phenom. 240(19), 1536–1552, 2011

    Google Scholar 

  11. Gemmer, J., Venkataramani, S.: Shape transitions in hyperbolic non-Euclidean plates. Soft Matter9(34), 8151–8161, 2013

    Google Scholar 

  12. Gemmer, J., Sharon, E., Shearman, T., Venkataramani, S.: Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets. Europhys. Lett. 114(2), 24003, 2016

    Google Scholar 

  13. Gladman, A., Matsumoto, E., Nuzzo, R., Mahadevan, L., Lewis, J.: Biomimetic 4D printing. Nat. Mater. 15, 413–418, 2016

    Google Scholar 

  14. Jones, G., Mahadevan, L.: Optimal control of plates using incompatible strains. Nonlinearity28, 3153, 2015

    Google Scholar 

  15. Jin, W., Sternberg, P.: Energy estimates for the von Kármán model of thin-film blistering. J. Math. Phys. 42, 192, 2001

    Google Scholar 

  16. Kempaiah, R., Nie, Z.: From nature to synthetic systems: shape transformation in soft materials. J. Mater. Chem. B2, 2357–2368, 2014

    Google Scholar 

  17. Kim, J., Hanna, J., Byun, M., Santangelo, C., Hayward, R.: Designing responsive buckled surfaces by halftone gel lithography. Science335, 1201–1205, 2012

    Google Scholar 

  18. Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science315, 1116–1120, 2007

    Google Scholar 

  19. Kupferman, R., Maor, C.: A Riemannian approach to the membrane limit in non-Euclidean elasticity. Commun. Contemp. Math. 16(5), 1350052, 2014

    Google Scholar 

  20. Kupferman, R., Solomon, J.P.: A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266, 2989–3039, 2014

    Google Scholar 

  21. Dias, M., Hanna, J., Santangelo, C.: Programmed buckling by controlled lateral swelling in a thin elastic sheet. Phys. Rev. E84, 036603, 2011

    Google Scholar 

  22. Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578, 1995

    Google Scholar 

  23. Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84, 1996

    Google Scholar 

  24. Lewicka, M., Mahadevan, L., Pakzad, R.: Models for elastic shells with incompatible strains. Proc. R. Soc. A47(2165 20130604), 1471–2946, 2014

    Google Scholar 

  25. Lewicka, M., Mahadevan, L., Pakzad, R.: The Monge–Ampere constrained elastic theories of shallow shells. Annales de l’Institut Henri Poincare (C) Non Linear Analysis34(1), 45–67, 2017

    Google Scholar 

  26. Lewicka, M., Mora, M., Pakzad, R.: The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Rat. Mech. Anal. 3(200), 1023–1050, 2011

    Google Scholar 

  27. Lewicka, M., Ochoa, P., Pakzad, R.: Variational models for prestrained plates with Monge–Ampere constraint. Diff. Integr. Equ. 28(9–10), 861–898, 2015

    Google Scholar 

  28. Lewicka, M., Pakzad, R.: Scaling laws for non-Euclidean plates and the \(W^{2, 2}\) isometric immersions of Riemannian metrics. ESAIM Control Optim. Calc. Var. 17, 1158–1173, 2011

    Google Scholar 

  29. Lewicka, M., Raoult, A., Ricciotti, D.: Plates with incompatible prestrain of high order. Annales de l’Institut Henri Poincare (C) Non Linear Analysis34, 1883–1912, 2017

    Google Scholar 

  30. Lewicka, M., Lucic, D.: Dimension Reduction for Thin Films with Transversally Varying Prestrain: The Oscillatory and the Non-oscillatory Case. Communications on Pure and Applied MathematicsWiley, Hoboken 2019

    Google Scholar 

  31. Liang, H., Mahadevan, L.: The shape of a long leaf. Proc. Nat. Acad. Sci. 106(52), 22049–22054, 2009

    Google Scholar 

  32. Maor, C., Shachar, A.: On the role of curvature in the elastic energy of non-Euclidean thin bodies. J. Elast. 2018. https://doi.org/10.1007/s10659-018-9686-1

    Google Scholar 

  33. Muller, S., Olbermann, H.: Conical singularities in thin elastic sheets. Calc. Var. Part. Differ. Equ. 49(3–4), 1177–1186, 2014

    Google Scholar 

  34. Olbermann, H.: Energy scaling law for the regular cone. J. Nonlinear Sci. 26(2), 287–314, 2016

    Google Scholar 

  35. Olbermann, H.: On a boundary value problem for conically deformed thin elastic sheets. arXiv:1710.01707.

  36. Rodriguez, P.E.K., Hoger, A., McCulloch, A.: Stress-dependent finite growth in finite soft elatic tissues. J. Biomech. 27, 455–467, 1994

    Google Scholar 

  37. Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E75, 046211–046217, 2007

    Google Scholar 

  38. Tobasco, I.: The cost of crushing: curvature-driven wrinkling of thin elastic sheets, in progress.

  39. Venkataramani, S.: Lower bounds for the energy in a crumpled elastic sheet–a minimal ridge. Nonlinearity17(1), 301–312, 2004

    Google Scholar 

  40. Wei, Z., Jia, J., Athas, J., Wang, C., Raghavan, S., Li, T., Nie, Z.: Hybrid hydrogel sheets that undergo pre-programmed shape transformations. Soft Matter10, 8157–8162, 2014

    Google Scholar 

Download references

Acknowledgements

Support by the NSF Grant DMS-1613153 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Lewicka.

Additional information

Communicated by G. Dal Maso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewicka, M. Quantitative Immersability of Riemann Metrics and the Infinite Hierarchy of Prestrained Shell Models. Arch Rational Mech Anal 236, 1677–1707 (2020). https://doi.org/10.1007/s00205-020-01500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01500-y

Navigation