Skip to main content
Log in

A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

A Correction to this article was published on 03 May 2023

This article has been updated

Abstract

Continuing the program initiated in Golovaty et al. (SIAM J Math Anal 51(1):276–320, 2018), we analyze a model problem based on highly disparate elastic constants that we propose in order to understand corners and cusps that form on the boundary between the nematic and isotropic phases in a liquid crystal. For a bounded planar domain \(\Omega \) we investigate the \(\varepsilon \rightarrow 0\) asymptotics of the variational problem

$$\begin{aligned} \inf \displaystyle \frac{1}{2}\int _\Omega \left( \frac{1}{\varepsilon } W(u)+\varepsilon |\nabla u|^2 + L_\varepsilon (\mathrm {div}\,u)^2 \right) \,\hbox {d}x \end{aligned}$$

within various parameter regimes for \(L_\varepsilon > 0.\) Here \(u:\Omega \rightarrow \mathbb {R}^2\) and W is a potential vanishing on the unit circle and at the origin. When \(\varepsilon \ll L_\varepsilon \rightarrow 0\), we show that these functionals \(\Gamma \)-converge to a constant multiple of the perimeter of the phase boundary and the divergence penalty is not felt. However, when \(L_\varepsilon \equiv L > 0\), we find that a tangency requirement along the phase boundary for competitors in the conjectured \(\Gamma \)-limit becomes a mechanism for development of singularities. We establish criticality conditions for this limit and under a non-degeneracy assumption on the potential we prove the compactness of energy bounded sequences in \(L^2\). The role played by this tangency condition on the formation of interfacial singularities is investigated through several examples: each of these examples involves analytically rigorous reasoning motivated by numerical experiments. We argue that generically, “wall” singularities between \(\mathbb {S}^1\)-valued states of the kind analyzed in Golovaty et al. (SIAM J Math Anal 51(1):276–320, 2018) are expected near the defects along the phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. Alouges, F., Rivière, T., Serfaty, S.: Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM Control Optim. Calc. Var. 8, 31–68, 2002. (A tribute to J. L. Lions)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 327-255, 1999

    Article  MathSciNet  MATH  Google Scholar 

  3. Angenent, S., Gurtin, M.E.: Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108(3), 323–391, 1989

    Article  MathSciNet  MATH  Google Scholar 

  4. Aviles, P., Giga, Y.: On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A129(1), 1–17, 1999

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldo, S.: Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire7(2), 67–90, 1990

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205(3), 795–826, 2012

    Article  MathSciNet  MATH  Google Scholar 

  7. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc, Boston 1994

    MATH  Google Scholar 

  8. Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Sel Math. (N.S.)1(2), 197–263, 1995

    Article  MathSciNet  MATH  Google Scholar 

  9. COMSOL Multiphysics® v. 5.3. http://www.comsol.com/. COMSOL AB, Stockholm, Sweden

  10. Conti, S., De Lellis, C.: Sharp upper bounds for a variational problem with singular perturbation. Math. Ann. 338(1), 119–146, 2007

    Article  MathSciNet  MATH  Google Scholar 

  11. De Lellis, C., Otto, F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. (JEMS)5(2), 107–145, 2003

    Article  MathSciNet  MATH  Google Scholar 

  12. DeBenedictis, A., Atherton, T.J.: Shape minimisation problems in liquid crystals. Liq. Cryst. 43(13–15), 2352–2362, 2016

    Article  Google Scholar 

  13. DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A131(4), 833–844, 2001

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang, J., Teer, E., Knobler, C.M., Loh, K.-K., Rudnick, J.: Boojums and the shapes of domains in monolayer films. Phys. Rev. E56, 1859–1868, 1997

    Article  ADS  Google Scholar 

  15. Fonseca, I.: The wulff theorem revisited. Proc. Math. Phys. Sci. 432(1884), 125–145, 1991

    MathSciNet  MATH  Google Scholar 

  16. Fonseca, I., Müller, S.: Quasi-convex integrands and lower semicontinuity in \(L^1\). SIAM J. Math. Anal. 23(5), 1081–1098, 1992

    Article  MathSciNet  MATH  Google Scholar 

  17. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Minimal Surfaces and Functions of Bounded Variation, vol. 80. Birkhäuser Verlag, Basel 1984

    Book  MATH  Google Scholar 

  18. Golovaty, D., Sternberg, P., Venkatraman, R.: A Ginzburg–Landau type problem for highly anisotropic nematic liquid crystals. SIAM J. Math. Anal. 51(1), 276–320, 2019

    Article  MathSciNet  MATH  Google Scholar 

  19. Ignat, R.: Singularities of divergence-free vector fields with values into \({{\mathbb{S}}}^1\) or \({{\mathbb{S}}}^2\). Appl. Micromagn. Conflu. Math. 4(3), 1230001, 80, 2012

    MATH  Google Scholar 

  20. Ignat, R., Merlet, B.: Entropy method for line-energies. Calc. Var. Partial Differ. Equ. 44(3–4), 375–418, 2012

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746, 1999

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390, 2000

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kim, Y.-K., Shiyanovskii, S.V., Lavrentovich, O.D.: Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals. J. Phys. Condens. Matter. 25(40), 404202, 2013

    Article  Google Scholar 

  24. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. Sect. A111(1–2), 69–84, 1989

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurzke, M., Spirn, D.: Gamma limit of the nonself-dual Chern–Simons–Higgs energy. J. Funct. Anal. 255(3), 535–588, 2008

    Article  MathSciNet  MATH  Google Scholar 

  26. Lamy, X., Lorent, A., Peng, G.: Private communication

  27. Lamy, X., Lorent, A., Peng, G.: Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture. arXiv:1910.10284 (2019)

  28. Lamy, X., Otto, F.: On the regularity of weak solutions to Burgers’ equation with finite entropy production. Calc. Var. PDE57(4), 94, 2018

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorent, A.: A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity. ESAIM Control Optim. Calc. Var. 18(2), 383–400, 2012

    Article  MathSciNet  MATH  Google Scholar 

  30. Lorent, A.: A quantitative characterisation of functions of low Aviles Giga energy in convex domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)13(1), 1–66, 2014

    MathSciNet  MATH  Google Scholar 

  31. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142, 1987

    Article  MathSciNet  MATH  Google Scholar 

  32. Mottram, N.J., Newton, C.J.: Introduction to Q-tensor theory. arXiv:1409.3542 (2014)

  33. Novack, M.R.: Dimension reduction for the landau–de gennes model: the vanishing nematic correlation length limit. SIAM J. Math. Anal. 50(6), 6007–6048, 2018

    Article  MathSciNet  MATH  Google Scholar 

  34. Owen, N.C., Rubinstein, J., Sternberg, P.: Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. R. Soc. London Ser. A429(1877), 505–532, 1990

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Poliakovsky, A.: On the \(\Gamma \)-limit of singular perturbation problems with optimal profiles which are not one-dimensional. Part I: the upper bound. Differ. Integral Equ. 26(9–10), 1179–1234, 2013

    MathSciNet  MATH  Google Scholar 

  36. Poliakovsky, A.: On the \(\Gamma \)-limit of singular perturbation problems with optimal profiles which are not one-dimensional. Part II: the lower bound. Israel J. Math. 210(1), 359–398, 2015

    Article  MathSciNet  MATH  Google Scholar 

  37. Rudnick, J., Bruinsma, R.: Shape of domains in two-dimensional systems: virtual singularities and a generalized wulff construction. Phys. Rev. Lett. 74, 2491–2494, 1995

    Article  ADS  Google Scholar 

  38. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403, 1998

    Article  MathSciNet  MATH  Google Scholar 

  39. Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260, 1988

    Article  MathSciNet  MATH  Google Scholar 

  40. van Bijnen, R.M.W., Otten, R.H.J., van der Schoot, P.: Texture and shape of two-dimensional domains of nematic liquid crystals. Phys. Rev. E86, 051703, 2012

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PS, MN and RV acknowledge the support from NSF DMS-1362879 and a Simons Collaboration grant 585520. RV also acknowledges the support from an Indiana University College of Arts and Sciences Dissertation Year Fellowship. The research of RV was also partially supported by the Center for Nonlinear Analysis at Carnegie Mellon University and by NSF DMS-1411646. DG acknowledges the support from NSF DMS-1729538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sternberg.

Additional information

Communicated by S. Müller

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We present here the Proof of Theorem 3.15. See Fig. 4 for a guide to the notation.

Proof

The derivation of (5.18) follows the same general lines as those appearing in the proof of Theorem 3.14. However, a major complicating consideration is that it is no longer possible to assume that the deforming vector field X is normal to all four curves \(\Gamma _{ij}\) since they all meet at p. Instead we will have to incorporate tangential components of X along these four curves as well.

To this end, we assume simply that \(X\in C_0^1(B(p,R);\mathbb {R}^2)\) and again introduce the map \(\Psi \) via (3.56). We assume that each \(\Gamma _{ij}\) is smoothly parametrized by arclength through a map \(r_{ij}:[0,s_0]\rightarrow \Gamma _{ij}\) for some \(s_0>0\) with \(r_{ij}(0)=p\). Then we replace (3.55) by

$$\begin{aligned} X(r_{ij}(s))=h^{\tau }_{ij}(s)\tau _{ij}(s)+h^{\nu }_{ij}(s)\nu _{ij}(s)\quad \hbox {for}\;s\in [0,s_0], \end{aligned}$$
(5.1)

where

$$\begin{aligned} h^{\tau }_{ij}:=X(r_{ij}(s))\cdot \tau _{ij}(s)\quad \hbox {and}\quad h^{\nu }_{ij}(s):=X(r_{ij}(s))\cdot \nu _{ij}(s). \end{aligned}$$

As a consequence of the compact support of X, we have that

$$\begin{aligned} h^{\tau }_{ij}(s_0)=h^{\nu }_{ij}(s_0)=0\quad \hbox {for all functions}\;h^{\tau }_{ij}\;\hbox {and}\;h^{\nu }_{ij} \end{aligned}$$
(5.2)

but we stress that none of these functions is assumed to vanish at \(s=0\), namely at the location of the junction P.

We now deform each region \(\Omega _j\), for \(j=0,1,2,3\) by the map \(\Psi \) to form four contiguous regions \(\Omega _j^t:=\Psi (\Omega _j,t)\) and we deform the four boundary curves \(\Gamma _{ij}\) to form four new boundary curves \(\Gamma _{ij}^t:=\Psi (\Gamma _{ij},t).\) Of course the junction point P is also carried along by this flow.

The four curves \(\Gamma _{ij}^t\) are parametrized by \(s\mapsto \Psi (r_{ij}(s),t)\) which we denote by \(r_{ij}^t(s)\) though s no longer represents arclength. Indeed one calculates that

$$\begin{aligned} r_{ij}^t(x)\sim r_{ij}(s)+t\big (h^{\tau }_{ij}(s)\tau _{ij}(s)+h^{\nu }_{ij}(s)\nu _{ij}(s)\big ) \end{aligned}$$
(5.3)

from which it follows that

$$\begin{aligned} \left| {r_{ij}^t\,'(s)}\right| \sim 1+t\big (h^{\tau }_{ij}\,'(s)-h^{\nu }_{ij}(s)\kappa _{ij}(s)\big ), \end{aligned}$$
(5.4)

where \(\kappa _{ij}(s)\) denotes the curvature of \(\Gamma _{ij}\) at \(r_{ij}(s)\) (compare with (3.61)) and we have invoked the Frenet relations \(\tau _{ij}'=\kappa _{ij}\nu _{ij}\) and \(\nu _{ij}'=-\kappa _{ij}\tau _{ij}\). A related calculation goes to show that the unit normal \(\nu _{ij}^t\) to \(\Gamma _{ij}^t\) is given by

$$\begin{aligned} \nu _{ij}^t\sim \nu _{ij}-t\big (h^{\nu }_{ij}\,'+\kappa _{ij}h^{\tau }_{ij}\big )\tau _{ij}. \end{aligned}$$
(5.5)

Now in the ball B(pR) the unperturbed critical point is given by

$$\begin{aligned} u(x)=\left\{ \begin{array}{ll} 0&{}\quad \hbox {for}\;x\in \Omega _0,\\ u_1(x)&{}\quad \hbox {for}\;x\in \Omega _1,\\ u_2(x)&{}\quad \hbox {for}\;x\in \Omega _2,\\ u_3(x)&{}\quad \hbox {for}\;x\in \Omega _3\end{array}\right. \end{aligned}$$

and we wish to perturb it into a new function \(u^t\) given by

$$\begin{aligned} u^t(x)=\left\{ \begin{matrix} 0&{}\quad \hbox {if}\;x\in \Omega _0^t,\\ u_1^t(x)&{}\quad \hbox {for}\;x\in \Omega _1^t,\\ u_2^t(x)&{}\quad \hbox {for}\;x\in \Omega _2^t,\\ u_3^t(x)&{}\quad \hbox {for}\;x\in \Omega _3^t\end{matrix}\right. . \end{aligned}$$

To carry this out, as in the previous proof, we extend the domain of definition of \(u_{j}\) to a neighborhood of \(\Omega _{j}\) in such a way that the extension is constant along the normals to the boundary of its original domain of definition. Then we introduce three functions \(\phi _1,\phi _2\) and \(\phi _3\) such that

$$\begin{aligned} u_j^t(x)\sim u_j(x)+t\phi _j(x)u_j(x)^{\perp }\quad \hbox {for}\;x\in \Omega _{j}^t\;\hbox {and for}\;j=1,2,3 \end{aligned}$$
(5.6)

so as to preserve the required \(\mathbb {S}^1\)-valued nature of \(u_j^t.\)

We must also take care to preserve the property \(u^t\in H_\mathrm {div}\,\) in the sense of (3.38) and this requires that the following four conditions hold to O(t) along \(\Gamma _{01},\Gamma _{12},\Gamma _{23}\) and \(\Gamma _{03}\) respectively:

$$\begin{aligned}&u_1^t(r_{01}^t(s))\cdot \nu _{01}^t(s)=0,\qquad u_1^t(r_{12}^t(s))\cdot \nu _{12}^t(s)=u_2^t(r_{12}^t(s))\cdot \nu _{12}^t(s),\nonumber \\&u_2^t(r_{23}^t(s))\cdot \nu _{23}^t(s)=u_3^t(r_{23}^t(s))\cdot \nu _{23}^t(s)\qquad \hbox {and}\nonumber \\&u_3^t(r_{03}^t(s))\cdot \nu _{03}^t(s)=0\; \hbox {for}\; s\in [0,s_0]. \end{aligned}$$
(5.7)

We note that the first and last of these conditions implies at \(t=0\) that either \(u_1\equiv \tau _{01}\) or \(\equiv -\tau _{01}\) along \(\Gamma _{01}\) and likewise either \(u_3\equiv \tau _{03}\) or \(\equiv -\tau _{03}\) along \(\Gamma _{03}\).

Substituting (5.3) and (5.5) into the four conditions of (5.7), and expanding to O(t), a tedious but straight-forward calculation leads to the following requirements relating the traces of the \(\phi _j\) to \(h^{\nu }_{ij,s}\):

$$\begin{aligned}&\phi _1\big (r_{01}(s)\big )=h^{\nu }_{01,s}(s), \end{aligned}$$
(5.8)
$$\begin{aligned}&\frac{1}{2}\bigg (\phi _1\big (r_{12}(s)\big )+\phi _2\big (r_{12}(s)\big )\bigg )=h^{\nu }_{12,s}(s),\end{aligned}$$
(5.9)
$$\begin{aligned}&\frac{1}{2}\bigg (\phi _2\big (r_{23}(s)\big )+\phi _3\big (r_{23}(s)\big )\bigg )=h^{\nu }_{23,s}(s),\end{aligned}$$
(5.10)
$$\begin{aligned}&\phi _3\big (r_{03}(s)\big )=h^{\nu }_{03,s}(s), \end{aligned}$$
(5.11)

for \(s\in [0,s_0]\), where s in the subscript denotes the derivative with respect to s

With the perturbations of the four curves \(\Gamma _{ij}\) and three functions \(u_j^t\) defined, we are ready to compute the variation of \(E_0\) in a neighborhood of the junction point P. Carrying out the calculation (3.70) in \(\Omega _j\) for \(j=1,2,3\) and then applying the divergence theorem we find with the aid of (3.39) that

$$\begin{aligned}&\left. \frac{{\hbox {d}}}{\hbox {d}t}\sum _{j=1}^3\left( \int _{\Omega ^t_j}(\mathrm {div}\,\,u^t_j)^2\,\hbox {d}x\right) \right| _{t=0}\\&\quad =-\int _{\Gamma _{01}}\bigg ( (\mathrm {div}\,\,u_1)^2\,h^{\nu }_{01}+2(\mathrm {div}\,\, u_1)(u_1\cdot \tau _{01})\phi _1 \bigg )\,\hbox {d}s\\&\qquad +\,\int _{\Gamma _{12}}\bigg ( (\mathrm {div}\,\,u_1)^2\,h^{\nu }_{12}+2(\mathrm {div}\,\, u_1)(u_1\cdot \tau _{12} )\phi _1 \bigg )\,\hbox {d}s\\&\qquad -\,\int _{\Gamma _{12}}\bigg ( (\mathrm {div}\,\,u_2)^2\,h^{\nu }_{12}+2(\mathrm {div}\,\, u_2)(u_2\cdot \tau _{12} )\phi _2 \bigg )\,\hbox {d}s\\&\qquad +\,\int _{\Gamma _{23}}\bigg ( (\mathrm {div}\,\,u_2)^2\,h^{\nu }_{23}+2(\mathrm {div}\,\, u_2)(u_2\cdot \tau _{23} )\phi _2 \bigg )\,\hbox {d}s\\&\qquad -\,\int _{\Gamma _{23}}\bigg ( (\mathrm {div}\,\,u_3)^2\,h^{\nu }_{23}+2(\mathrm {div}\,\, u_3)(u_3\cdot \tau _{23} )\phi _3 \bigg )\,\hbox {d}s\\&\qquad -\,\int _{\Gamma _{03}}\bigg ( (\mathrm {div}\,\,u_3)^2\,h^{\nu }_{03}+2(\mathrm {div}\,\, u_3)(u_3\cdot \tau _{03})\phi _3, \bigg )\,\hbox {d}s. \end{aligned}$$

where we have used the fact that \(u_1^\perp \cdot \nu _{01}=u_1\cdot \tau _{01}\), \(u_1^\perp \cdot \nu _{12}=u_1\cdot \tau _{12}\), etc.

Now we appeal to the relations (5.8)–(5.11), along with the conditions \(u_2\cdot \tau _{12}=-u_1\cdot \tau _{12}\) and \(u_3\cdot \tau _{23}=-u_2\cdot \tau _{23}\) and perform an integration by parts to find

$$\begin{aligned}&\left. \frac{{\hbox {d}}}{\hbox {d}t}\sum _{j=1}^3\left( \int _{\Omega ^t_j}(\mathrm {div}\,\,u^t_j)^2\,\hbox {d}x\right) \right| _{t=0}\nonumber \\&\quad =\int _{\Gamma _{01}}\bigg \{ -(\mathrm {div}\,\,u_1)^2+2(\mathrm {div}\,\,u_1)'(u_1\cdot \tau _{01}) \bigg \}\,h^{\nu }_{01}\,\hbox {d}s\nonumber \\&\qquad +\,\int _{\Gamma _{12}}\bigg \{\bigg ((\mathrm {div}\,\,u_1)^2- (\mathrm {div}\,\,u_2)^2\nonumber \\&\qquad -\,4\big [(\mathrm {div}\,\,u_2)'(u_1\cdot \tau _{12})+ (\mathrm {div}\,\,u_2)(u_1\cdot \tau _{12})'\big ]\bigg )\,h^{\nu }_{12}\nonumber \\&\qquad +\,2(\mathrm {div}\,\, u_1-\mathrm {div}\,\,u_2)(u_1\cdot \tau _{12} )\phi _1 \bigg \}\,\hbox {d}s\nonumber \\&\qquad +\,\int _{\Gamma _{23}}\bigg \{\bigg ((\mathrm {div}\,\,u_2)^2- (\mathrm {div}\,\,u_3)^2\nonumber \\&\qquad -\,4\big [(\mathrm {div}\,\,u_3)'(u_2\cdot \tau _{23})+ (\mathrm {div}\,\,u_3)(u_2\cdot \tau _{23})'\big ]\bigg )\,h^{\nu }_{23}\nonumber \\&\qquad +\,2(\mathrm {div}\,\, u_2-\mathrm {div}\,\,u_3)(u_2\cdot \tau _{23} )\phi _2 \bigg \}\,\hbox {d}s\nonumber \\&\qquad +\,\int _{\Gamma _{03}}\bigg \{ -(\mathrm {div}\,\,u_3)^2+2(\mathrm {div}\,\,u_3)'(u_3\cdot \tau _{03}) \bigg \}\,h^{\nu }_{03}\,\hbox {d}s\nonumber \\&\qquad +\,2(\mathrm {div}\,\,u_1(p))(u_1(p)\cdot \tau _{01}(0)) \,h^{\nu }_{01}(0) -4\,\mathrm {div}\,\,u_2(p)(u_1(p)\cdot \tau _{12}(0))\,h^{\nu }_{12}(0)\nonumber \\&\qquad -\,4\,\mathrm {div}\,\,u_3(p)(u_2(p)\cdot \tau _{23}(0))h^{\nu }_{23}(0)\nonumber \\&\qquad +\,2\,(\mathrm {div}\,\,u_3(p))(u_3(p)\cdot \tau _{03}(0))\,h^{\nu }_{03}(0). \end{aligned}$$
(5.12)

We turn now to calculating the variations of the four jump energies. We begin by invoking (5.4) to compute

$$\begin{aligned}&\left. \frac{{\hbox {d}}}{\hbox {d}t}\left( \int _{\Gamma _{01}^t}1\,\hbox {d}s+\int _{\Gamma _{03}^t}1\,\hbox {d}s\right) \right| _{t=0}\\&\quad = \left. \frac{{\hbox {d}}}{\hbox {d}t}\left( \int _0^{s_0}\left| {r_{01,s}^t(s)}\right| \,\hbox {d}s+\int _0^{s_0}\left| {r_{03,s}^t}\right| \,\hbox {d}s\right) \right| _{t=0}\\&\quad =\frac{{\hbox {d}}}{\hbox {d}t}\left( \int _0^{s_0}1+t\big (h^{\tau }_{01,s}-h^{\nu }_{01}(s)\kappa _{01}(s)\big )\,\hbox {d}s+\int _0^{s_0}1\right. \\&\qquad \left. \left. +\,t\big (h^{\tau }_{03,s}-h^{\nu }_{03}(s)\kappa _{03}(s)\big )\,\hbox {d}s\right) \right| _{t=0}\\&\quad =\int _0^{s_0}\big (h^{\tau }_{01,s}-h^{\nu }_{01}(s)\kappa _{01}(s)\big )\,\hbox {d}s+\int _0^{s_0}\big (h^{\tau }_{03,s}-h^{\nu }_{03}(s)\kappa _{03}(s)\big )\,\hbox {d}s \end{aligned}$$

Thus,

$$\begin{aligned}&\frac{K(0)}{2} \left. \frac{{\hbox {d}}}{\hbox {d}t}\left( \mathcal {H}^1(\Gamma _{01}^t)+\mathcal {H}^1(\Gamma _{03}^t)\right) \right| _{t=0}\nonumber \\&\quad =-\frac{K(0)}{2} \bigg (\int _{\Gamma _{01}}h^{\nu }_{01}\kappa _{01}\,\hbox {d}s+\int _{\Gamma _{03}}h^{\nu }_{03}\kappa _{03}\,\hbox {d}s+h^{\tau }_{01}(0)+h^{\tau }_{03}(0)\bigg ). \qquad \quad \end{aligned}$$
(5.13)

To compute the variation in the jump energies over \(\Gamma _{12}^t\) and \(\Gamma _{23}^t\) requires an expansion to O(t) of the quantities \(u^t\cdot \nu _{12}^t\) and \(u^t\cdot \nu _{23}^t.\) Substituting the expression for \(r_{12}^t\) from (5.3) into the formula for \(u_1^t\) from (5.6) and Taylor expanding in t we find with the use of (5.5) that along \(\Gamma _{12}^t\) we have

$$\begin{aligned}&u^t\cdot \nu _{12}^t\sim \bigg (u_1(r_{12}^t(s))+tu_1^\perp (r_{12}(s))\phi _1(r_{12}(s))\bigg )\cdot \nu _{12}^t\nonumber \\&\quad \sim \bigg (u_1\big (r_{12}+t\left[ h^{\tau }_{12}\tau _{12} +h^{\nu }_{12}\nu _{12}\right] \big )+t\phi _1(r_{12})u_1^\perp (r_{12})\bigg )\nonumber \\&\qquad \cdot \bigg (\nu _{12}-t\big (h^{\nu }_{12,s}+\kappa _{12}h^{\tau }_{12}\big )\tau _{12}\bigg )\nonumber \\&\quad \sim u_1\cdot \nu _{12}+t\bigg [ \left( \phi _1-h^{\nu }_{12,s}-\kappa _{12}h^{\tau }_{12}\right) (u_1\cdot \tau _{12})+h^{\tau }_{12}(u_1'\cdot \nu _{12})\bigg ],\qquad \quad \end{aligned}$$
(5.14)

where \(u_1\) and \(\phi _1\) in the expression above are evaluated at \(x=r_{12}(s)\) and \(u_1'=\frac{{\hbox {d}}}{\hbox {d}s}u_1(r_{12}(s)).\) In the last line we have also used that our extension of \(u_1\) was constant along \(\nu _{12}\) to eliminate the term \(\nabla u_1\cdot \nu _{12}\) that would other have been present upon Taylor expanding.

Similarly, we calculate that along \(\Gamma _{23}\) we have

$$\begin{aligned} u^t\cdot \nu _{23}^t\sim u_2\cdot \nu _{23}+t\bigg [ \left( \phi _2-h^{\nu }_{23,s}-\kappa _{23}h^{\tau }_{23}\right) (u_2\cdot \tau _{23})+h^{\tau }_{23}(u_2'\cdot \nu _{23})\bigg ].\nonumber \\ \end{aligned}$$
(5.15)

From (5.14) and (5.15), along with (5.4) we can compute that

$$\begin{aligned}&\left. \frac{{\hbox {d}}}{\hbox {d}t}\left( \int _{\Gamma _{12}}K\big (u^t\cdot \nu _{12}^t\big )\,\hbox {d}s+\int _{\Gamma _{23}}K\big (u^t\cdot \nu _{23}^t)\,\hbox {d}s\right) \right| _{t=0}\\&\quad =\frac{{\hbox {d}}}{\hbox {d}t}\left( \int _0^{s_0}K\big (u^t(r_{12}^t(s))\cdot \nu _{12}^t(s)\big )\left| {r_{12,s}^t}\right| \,\hbox {d}s\right. \\&\qquad \left. \left. +\, \int _0^{s_0}K\big (u^t(r_{23}^t(s))\cdot \nu _{23}^t(s)\big )\left| {r_{23,s}^t}\right| \,\hbox {d}s\right) \right| _{t=0}\\&\quad = \int _{\Gamma _{12}} K(u_1\cdot \nu _{12})\big (h^{\tau }_{12,s}-h^{\nu }_{12}\kappa _{12}\big )\,\hbox {d}s\\&\qquad +\,\int _{\Gamma _{12}} K'(u_1\cdot \nu _{12})\bigg (\big (\phi _1-h^{\nu }_{12,s}-h^{\tau }_{12}\kappa _{12}\big )(u_1\cdot \tau _{12})+ h^{\tau }_{12}(u_1'\cdot \nu _{12})\bigg )\,\hbox {d}s\\&\qquad +\,\int _{\Gamma _{23}} K(u_2\cdot \nu _{23})\big (h^{\tau }_{23,s}-h^{\nu }_{23}\kappa _{23}\big )\,\hbox {d}s\\&\qquad +\,\int _{\Gamma _{23}} K'(u_2\cdot \nu _{23})\bigg (\big (\phi _2-h^{\nu }_{23,s}-h^{\tau }_{23}\kappa _{23}\big )(u_2\cdot \tau _{23})+ h^{\tau }_{23}(u_2'\cdot \nu _{23})\bigg )\,\hbox {d}s. \end{aligned}$$

Now, since

$$\begin{aligned} \frac{{\hbox {d}}}{\hbox {d}s}\big [K\big (u_1\cdot \nu _{12})\big ]=(u_1'\cdot \nu _{12})-\kappa _{12}(u_1\cdot \tau _{12}) \end{aligned}$$

and

$$\begin{aligned} \frac{{\hbox {d}}}{\hbox {d}s}\big [K\big (u_2\cdot \nu _{23})\big ]=(u_2'\cdot \nu _{23})-\kappa _{23}(u_2\cdot \tau _{23}), \end{aligned}$$

we have that

$$\begin{aligned}&K(u_1\cdot \nu _{12})h^{\tau }_{12,s}+K'(u_1\cdot \nu _{12})\big ( (u_1'\cdot \nu _{12})-\kappa _{12}(u_1\cdot \tau _{12}) \big )h^{\tau }_{12}\\&\quad =\frac{{\hbox {d}}}{\hbox {d}s}\big [K\big (u_1\cdot \nu _{12})h^{\tau }_{12}\big ] \end{aligned}$$

and

$$\begin{aligned}&K(u_2\cdot \nu _{23})h^{\tau }_{23,s}+K'(u_2\cdot \nu _{23})\big ( (u_2'\cdot \nu _{23})-\kappa _{23}(u_2\cdot \tau _{23}) \big )h^{\tau }_{23}\nonumber \\&\quad =\frac{{\hbox {d}}}{\hbox {d}s}\big [K\big (u_2\cdot \nu _{23})h^{\tau }_{23}\big ]. \end{aligned}$$

Using these last two identities in (5.16) and integrating by parts implies that

$$\begin{aligned}&\left. \frac{{\hbox {d}}}{\hbox {d}t}\left( \int _{\Gamma _{12}}K\big (u^t\cdot \nu _{12}^t\big )\,\hbox {d}s+\int _{\Gamma _{23}}K\big (u^t\cdot \nu _{23,s}^t)\right) \right| _{t=0}\nonumber \\&\quad = -\int _{\Gamma _{12}} K(u_1\cdot \nu _{12})h^{\nu }_{12}\kappa _{12}\,\hbox {d}s+ \int _{\Gamma _{12}} K'(u_1\cdot \nu _{12})(\phi _1-h^{\nu }_{12,s})(u_1\cdot \tau _{12})\,\hbox {d}s\nonumber \\&\qquad -\,\int _{\Gamma _{23}} K(u_2\cdot \nu _{23})h^{\nu }_{23}\kappa _{23}\,\hbox {d}s+ \int _{\Gamma _{23}} K'(u_2\cdot \nu _{23})(\phi _2-h^{\nu }_{23,s})(u_2\cdot \tau _{23})\,\hbox {d}s\nonumber \\&\qquad -\,K\big (u_1(p)\cdot \nu _{12}(0))h^{\tau }_{12}(0)-K\big (u_2(p)\cdot \nu _{23}(0))h^{\tau }_{23}(0). \end{aligned}$$
(5.16)

Then invoking the criticality condition (3.40) from Theorem 3.11 and integrating by parts we can rewrite this identity as

$$\begin{aligned}&\left. \frac{{\hbox {d}}}{\hbox {d}t}\left( \int _{\Gamma _{12}}K\big (u^t\cdot \nu _{12}^t\big )\,\hbox {d}s+\int _{\Gamma _{23}}K\big (u^t\cdot \nu _{23}^t)\,\hbox {d}s\right) \right| _{t=0}\nonumber \\&\quad = -\int _{\Gamma _{12}} K(u_1\cdot \nu _{12})h^{\nu }_{12}\kappa _{12}\,\hbox {d}s\nonumber \\&\qquad +\, L\int _{\Gamma _{12}} \big ( \mathrm {div}\,\,u_2-\mathrm {div}\,\,u_1 \big )(\phi _1-h^{\nu }_{12,s})(u_1\cdot \tau _{12})\,\hbox {d}s\nonumber \\&\qquad -\,\int _{\Gamma _{23}} K(u_2\cdot \nu _{23})h^{\nu }_{23}\kappa _{23}\,\hbox {d}s\nonumber \\&\qquad +\, L\int _{\Gamma _{23}} \big ( \mathrm {div}\,\,u_3-\mathrm {div}\,\,u_2 \big )(\phi _2-h^{\nu }_{23,s})(u_2\cdot \tau _{23})\,\hbox {d}s\nonumber \\&\qquad -\,K\big (u_1(p)\cdot \nu _{12}(0))h^{\tau }_{12}(0)-K\big (u_2(p)\cdot \nu _{23}(0))h^{\tau }_{23}(0)\nonumber \\&\quad = \int _{\Gamma _{12}}\bigg \{ L \big ( \mathrm {div}\,\,u_2-\mathrm {div}\,\,u_1 \big )'(u_1\cdot \tau _{12})+L\big ( \mathrm {div}\,\,u_2-\mathrm {div}\,\,u_1 \big )(u_1\cdot \tau _{12})'\nonumber \\&\qquad -\,K(u_1\cdot \nu _{12})\kappa _{12}\bigg \}h^{\nu }_{12}\,\hbox {d}s +L\int _{\Gamma _{12}} \big ( \mathrm {div}\,\,u_2-\mathrm {div}\,\,u_1 \big )(u_1\cdot \tau _{12})\phi _1\,\hbox {d}s\nonumber \\&\qquad +\,\int _{\Gamma _{23}}\bigg \{L \big ( \mathrm {div}\,\,u_3-\mathrm {div}\,\,u_2 \big )'(u_2\cdot \tau _{23})+L\big ( \mathrm {div}\,\,u_3-\mathrm {div}\,\,u_2 \big )(u_2\cdot \tau _{23})'\nonumber \\&\qquad -\,K(u_2\cdot \nu _{23})\kappa _{23}\bigg \}h^{\nu }_{23}\,\hbox {d}s + L\int _{\Gamma _{23}} \big ( \mathrm {div}\,\,u_3-\mathrm {div}\,\,u_2 \big )(u_2\cdot \tau _{23})\phi _2\,\hbox {d}s\nonumber \\&\qquad -\,K\big (u_1(p)\cdot \nu _{12}(0))h^{\tau }_{12}(0)+L\big ( \mathrm {div}\,\,u_2(p) \nonumber \\&\qquad -\,\mathrm {div}\,\,u_1(p) \big )(u_1(p)\cdot \tau _{12}(0))h^{\nu }_{12}(0)\nonumber \\&\qquad -\,K\big (u_2(p)\cdot \nu _{23}(0))h^{\tau }_{23}(0)+L\big ( \mathrm {div}\,\,u_3(p) \nonumber \\&\qquad -\,\mathrm {div}\,\,u_2(p) \big )(u_2(p)\cdot \tau _{23}(0))h^{\nu }_{23}(0). \end{aligned}$$
(5.17)

Now we can combine (5.12), (5.13) and (5.17), and through a use of the criticality conditions (3.53) and (3.54) of Theorem 3.14 we find that all integrals over the four curves \(\Gamma _{ij}\) drop, leaving only

$$\begin{aligned}&\frac{{\hbox {d}}}{\hbox {d}t}E_0(u^t)|_{t=0}\\&\quad = -\frac{K(0)}{2}\big (h^{\tau }_{01}(0)+h^{\tau }_{03}(0)\big )-K\big (u_1(p)\cdot \nu _{12}(0)\big )h^{\tau }_{12}-K\big (u_2(p)\cdot \nu _{23}(0)\big )h^{\tau }_{23}\\&\quad \quad +\,L\bigg \{ \mathrm {div}\,\,u_1(p)(u_1(p)\cdot \tau _{01}(0)) h^{\nu }_{01}(0) + \mathrm {div}\,\,u_3(p)(u_3(p)\cdot \tau _{03}(0)) h^{\nu }_{03}(0) \bigg \} \\&\qquad -\,L\bigg \{\big (\mathrm {div}\,\,u_1(p)+\mathrm {div}\,\,u_2(p)\big )\big (u_1(p)\cdot \tau _{12}(0)\big )h^{\nu }_{12}+ \big (\mathrm {div}\,\,u_2(p)\\&\qquad +\,\mathrm {div}\,\,u_3(p)\big )\big (u_2(p)\cdot \tau _{23}(0)\big )h^{\nu }_{23}\bigg \} \end{aligned}$$

Recall now that \(h^{\tau }_{01}(0)=X(p)\cdot \tau _{01}(0)\), \(h^{\nu }_{01}(0)=X(p)\cdot \nu _{01}(0)\), etc. Thus, the arbitrary value of the vector X(p), implies that a vanishing first variation \(\frac{{\hbox {d}}}{\hbox {d}t}_{|_t=0} E_0(u^t)=0\) leads to the necessary condition at a junction P of the form

$$\begin{aligned}&\frac{K(0)}{2}\big (\tau _{01}+\tau _{03}\big )+K\big (u_1\cdot \nu _{12}\big )\tau _{12}+K\big (u_2\cdot \nu _{23}\big )\tau _{23}\nonumber \\&\quad =L\bigg \{ \mathrm {div}\,\,u_1(u_1\cdot \tau _{01}) \nu _{01} + \mathrm {div}\,\,u_3(u_3\cdot \tau _{03}) \nu _{03} \bigg \} \nonumber \\&\qquad -\,L\bigg \{\big (\mathrm {div}\,\,u_1+\mathrm {div}\,\,u_2\big )\big (u_1\cdot \tau _{12}\big )\nu _{12}+ \big (\mathrm {div}\,\,u_2+\mathrm {div}\,\,u_3\big )\big (u_2\cdot \tau _{23}\big )\nu _{23} \bigg \},\nonumber \\ \end{aligned}$$
(5.18)

where all quantities above are evaluated at the junction P. \(\quad \square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovaty, D., Novack, M., Sternberg, P. et al. A Model Problem for Nematic-Isotropic Transitions with Highly Disparate Elastic Constants. Arch Rational Mech Anal 236, 1739–1805 (2020). https://doi.org/10.1007/s00205-020-01501-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01501-x

Navigation