Skip to main content
Log in

A Total Fractional-Order Variation Model for Image Super-Resolution and Its SAV Algorithm

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Single-image super-resolution reconstruction aims to obtain a high-resolution image from a low-resolution image. Since the super-resolution problem is ill-posed, it is common to use a regularization technique. However, the choice of the fidelity and regularization terms is not obvious, and it plays a major role in the quality of the desired high resolution image. In this paper, a hybrid single-image super-resolution model integrated with total variation (TV) and fractional-order TV is proposed to provide an effective reconstruction of the HR image. We develop an efficient numerical scheme for this model using the scalar auxiliary variable approach with an adaptive time stepping strategy. Thorough experimental results suggest that the proposed model and numerical scheme can reconstruct high quality results both quantitatively and perceptually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martín, G., Bioucas-Dias, J.M.: Hyperspectral compressive acquisition in the spatial domain via blind factorization. In: 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). pp. 1–4 (2015)

  2. Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14(11), 1860–1875 (2005)

    Article  Google Scholar 

  3. Morin, R., Basarab, A., Kouamé, D.: Alternating direction method of multipliers framework for super-resolution in ultrasound imaging. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI). pp. 1595–1598 (2012)

  4. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  5. Lertrattanapanich, S., Bose, N.K.: High resolution image formation from low resolution frames using delaunay triangulation. IEEE Trans. Image Process. 11(12), 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  6. Hou, S., Andrews, H,C.: Cubic splines for imageinterpolation and digitalfiltering. IEEE Trans. Acoust. Speech Signal Process. 26, 508–517 (1979)

    Google Scholar 

  7. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graphics Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  8. Elad, M., Datsenko, D.: Example-based regularization deployed to super-resolution reconstruction of a single image. Comput. J. 52(1), 15–30 (2018)

    Article  Google Scholar 

  9. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: IEEE International Conference on Computer Vision, pp. 349–356 (2009)

  10. Patanavijit, V., Jitapunkul, S.: A robust iterative multiframe super-resolution reconstruction using a bayesian approach with lorentzian norm. In: 2006 10th IEEE Singapore International Conference on Communication Systems. pp. 1–5 (2006)

  11. Yue, L., Shen, H., Yuan, Q., Zhang, L.: A locally adaptive l1–l2 norm for multi-frame super-resolution of images with mixed noise and outliers. Sig. Process. 105, 156–174 (2014)

    Article  Google Scholar 

  12. Zeng, X., Yang, L.: A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified btv regularization. Digit. Signal Proc. 23(1), 98–109 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wang, H., Gao, X., Zhang, K., Li, J.: Single-image super-resolution using active-sampling gaussian process regression. IEEE Trans. Image Process. 25(2), 935–948 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zhu, Z., Guo, F., Yu, H., Chen, C.: Fast single image super-resolution via self-example learning and sparse representation. IEEE Trans. Multimedia 16(8), 2178–2190 (2014)

    Article  Google Scholar 

  15. Maeland, E.: On the comparison of interpolation methods. IEEE Trans. Med. Imaging 7(3), 213–217 (1988)

    Article  Google Scholar 

  16. Lu, X., Yuan, Y., Yan, P.: Image super-resolution via double sparsity regularized manifold learning. IEEE Trans. Circuits Syst. Video Technol. 23(12), 2022–2033 (2013)

    Article  Google Scholar 

  17. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Computer Vision–ECCV 2014, Lecture notes in computer science, vol. 8692, pp. 184–199. Springer (2014)

  18. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018)

  20. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1646–1654 (2016)

  21. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1637–1645 (2016)

  22. Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8 (2008)

  23. Li, X., He, H., Wang, R., Tao, D.: Single image superresolution via directional group sparsity and directional features. IEEE Trans. Image Process. 24(9), 2874–2888 (2015)

    Article  MathSciNet  Google Scholar 

  24. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Sig. Process. 128, 389–408 (2016)

    Article  Google Scholar 

  25. Zhang, X., Lam, E., Wu, E., Wong, K.: Application of tikhonov regularization to super-resolution reconstruction of brain mri images. pp. 51–56 (2007)

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noiseremoval algorithms. Phys. D Nonlinear Phenom. 60, 259–268 (1992)

    Article  Google Scholar 

  27. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  28. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(l_1\)-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)

    Article  MathSciNet  Google Scholar 

  29. Rodríguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Process. 18(2), 322–332 (2009)

    Article  MathSciNet  Google Scholar 

  30. Marquina, A., Osher, S.: Image super-resolution by TV-regularization and bregman iteration. J. Sci. Comput. 37, 367–382 (2008)

    Article  MathSciNet  Google Scholar 

  31. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  Google Scholar 

  32. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  Google Scholar 

  33. Jung, M., Bresson, X., Chan, T.F., Vese, L.A.: Nonlocal mumford-shah regularizers for color image restoration. IEEE Trans. Image Process. 20(6), 1583–1598 (2011)

    Article  MathSciNet  Google Scholar 

  34. Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Nume. Math. Theory Methods Appl. 6(1), 276–296 (2013)

    Article  MathSciNet  Google Scholar 

  35. Ren, Z., He, C., Zhang, Q.: Fractional order total variation regularization for image super-resolution. Sig. Process. 93(9), 2408–2421 (2013)

    Article  Google Scholar 

  36. Bai, J., Feng, X.C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)

    Article  MathSciNet  Google Scholar 

  37. Pu, Y.F., Zhou, J.L., Yuan, X.: Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process. 19(2), 491–511 (2010)

    Article  MathSciNet  Google Scholar 

  38. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  39. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  40. Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8(4), 2487–2518 (2015)

    Article  MathSciNet  Google Scholar 

  41. Zhuang, Q., Shen, J.: Efficient sav approach for imaginary time gradient flows with applications to one- and multi-component bose-einstein condensates. J. Comput. Phys. 396, 72–88 (2019)

    Article  MathSciNet  Google Scholar 

  42. Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008)

    Article  MathSciNet  Google Scholar 

  43. Rajagopal, A., Fischer, P., Kuhl, E., Steinmann, P.: Natural element analysis of the Cahn–Hilliard phase-field model. Comput. Mech. 46(3), 471–493 (2010)

    Article  MathSciNet  Google Scholar 

  44. Zhao, N., Wei, Q., Basarab, A., Dobigeon, N., Kouamé, D., Tourneret, J.: Fast single image super-resolution using a new analytical solution for \(\ell _{2}\)-\(\ell _{2}\) problems. IEEE Trans. Image Process. 25(8), 3683–3697 (2016)

    Article  MathSciNet  Google Scholar 

  45. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  46. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using l1 fidelity on frame coefficients. J. Mathemat. Imaging Vis. 36(3), 201–226 (2010). https://doi.org/10.1007/s10851-009-0180-z

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (11971131, 11971407, U1637208, 61873071, 51476047, 11871133), NSF DMS-1720442, the Natural Science Foundation of Heilongjiang Province (LC2018001, A2016003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Shen, J., Guo, Z. et al. A Total Fractional-Order Variation Model for Image Super-Resolution and Its SAV Algorithm. J Sci Comput 82, 81 (2020). https://doi.org/10.1007/s10915-020-01185-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01185-1

Keywords

Navigation