Skip to main content
Log in

The simpler block CMRH method for linear systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The block changing minimal residual method based on the Hessenberg reduction algorithm (in short BCMRH) is a recent block Krylov method that can solve large linear systems with multiple right-hand sides. This method uses the block Hessenberg process with pivoting strategy to construct a trapezoidal Krylov basis and minimizes a quasi-residual norm by solving a least squares problem. In this paper, we describe the simpler BCMRH method which is a new variant that avoids the QR factorization to solve the least-squares problem. Another major difference between the classical and simpler variants of BCMRH is that the simpler one allows to check the convergence within each cycle of the block Hessenberg process by using a recursive relation that updates the residual at each iteration. This is not possible with the classical BCMRH where we can only compute an estimate of the residual norm. Experiments are described to compare the behavior of the new proposed method with that of the classical and simpler versions of the block GMRES method. These numerical experiments show the good performances of the simpler BCMRH method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Addam, M., Elbouyahyaoui, L., Heyouni, M.: On Hessenberg type methods for low-rank Lyapunov matrix equations. Applicationes Mathematicae 45, 255–273 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Addam, M., Heyouni, M., Sadok, H.: The block Hessenberg process for matrix equations. Electron. Trans. Numer. Anal. 46, 460–473 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Amini, S., Toutounian, F., Gachpazan, M.: The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides. J. Comput. Appl. Math. 337, 166–174 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numerical Linear Algebra with Applications 20(1), 27–43 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Beik, F.P.A., Saberi-Movahed, F., Ahmadi-Asl, S.: On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Numerical Linear Algebra with Applications 23(3), 444–466 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Datta, B.N., Saad, Y.: Arnoldi methods for large Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment. Linear Algebra Appl. 154-156, 225–244 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1,1–1,25 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Duminil, S., Heyouni, M., Marion, P., Sadok, H.: Algorithms for the CMRH method for dense linear systems. Numerical Algorithms 71(2), 383–394 (2016)

    MathSciNet  MATH  Google Scholar 

  9. El Guennouni, A., Jbilou, K., Sadok, H.: A block version of BiCGSTAB for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 16, 129–142 (2003)

    MathSciNet  MATH  Google Scholar 

  10. El Guennouni, A., Jbilou, K., Sadok, H.: The block Lanczos method for linear systems with multiple right-hand sides. Appl. Numer. Math. 51(2), 243–256 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Freund, R.W., Malhotra, M.: A block QMR algorithm for non-hermitian linear systems with multiple right-hand sides. Linear Algebra and its Applications 254(1), 119–157 (1997). Proceeding of the Fifth Conference of the International Linear Algebra Society

    MathSciNet  MATH  Google Scholar 

  12. Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60(1), 315–339 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  14. Gu, X.-M., Huang, T.-Z., Carpentieri, B., Imakura, A., Zhang, K., Du, L.: Effecient variants of the CMRH method for solving multi-shifted non-Hermitian linear systems. arXiv (2018)

  15. Gu, X.-M., Huang, T.-Z., Yin, G., Carpentieri, B., Wen, C., Du, L.: Restarted Hessenberg method for solving shifted nonsymmetric linear systems. J. Comput. Appl. Math. 331, 166–177 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Gutknecht, M.H.: Block Krylov Space Methods for Linear Systems with Multiple Right-Hand Sides: An Introduction (2006)

  17. Gutknecht, M.H., Schmelzer, T.: The block grade of a block Krylov space. Linear Algebra Appl. 430(1), 174–185 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear systems. J. Comput. Appl. Math. 213(2), 387–399 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Jiránek, P., Rozloznik, M., Gutknecht, M.: How to make simpler GMRES and GCR more stable. SIAM Journal on Matrix Analysis and Applications 30(4), 1483–1499 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Jiránek, P., Rozožní, M.: Adaptive version of simpler GMRES. Numerical Algorithms 53(1), 93 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Kress, R.: Linear Integral Equations, 3rd edn. Springer, New York (1989)

    MATH  Google Scholar 

  22. Liu, H., Zhong, B.: Simpler Block GMRES for nonsymmetric systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 30, 1–9 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Morgan, R.B.: Restarted block-GMRES with deflation of eigenvalues. Appl. Numer. Math. 54(2), 222–236 (2005)

    MathSciNet  MATH  Google Scholar 

  24. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, second edition (2003)

  26. Sadok, H.: CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numerical Algorithms 20(4), 303–321 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Sadok, H., Szyld, D. B.: A new look at CMRH and its relation to GMRES. BIT Numer. Math. 52(2), 485–501 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Simoncini, V., Gallopoulos, E.: An iterative method for nonsymmetric systems with multiple right-hand sides. SIAM J. Sci. Comput. 16(4), 917–933 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Simoncini, V., Gallopoulos, E.: Convergence properties of block GMRES and matrix polynomials. Linear Algebra Appl. 247, 97–119 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Soodhalter, K.: Block Krylov subspace recycling for shifted systems with unrelated right-hand sides. SIAM J. Sci. Comput. 38(1), A302–A324 (2016)

    MathSciNet  Google Scholar 

  31. Sun, D.-L., Carpentieri, B., Huang, T.-Z., Jing, Y.-F.: A spectrally preconditioned and initially deflated variant of the restarted block GMRES method for solving multiple right-hand sides linear systems. Int. J. Mech. Sci. 144, 775–787 (2018)

    Google Scholar 

  32. Sun, D.-L., Huang, T.-Z., Carpentieri, B., Jing, Y.-F.: A new shifted block GMRES method with inexact breakdowns for solving multi-shifted and multiple right-hand sides linear systems. J. Sci. Comput. 78(2), 746–769 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Sun, D.-L., Huang, T.-Z., Jing, Y.-F., Carpentieri, B.: A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides. Numerical Linear Algebra with Applications 25(5), e2148 (2018 ). e2148 nla.2148

    MathSciNet  MATH  Google Scholar 

  34. Vital, B.: Etude de quelques méthodes de résolution de problèmes linéaires de grande taille sur multiprocesseur. PhD thesis, Université, Rennes, 1 (1990)

  35. Walker, H.F., Zhou, L.: A simpler GMRES. Numerical Linear Algebra with Applications 1(6), 571–581 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Inc., New York (1988)

    MATH  Google Scholar 

  37. Xiu Zhong, H., Wu, G., Liang Chen, G.: A flexible and adaptive simpler block GMRES with deflated restarting for linear systems with multiple right-hand sides. J. Comput. Appl. Math. 282, 139–156 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions which helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Heyouni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we give Algorithms 6 and 7 a brief description of the restarted standard block GMRES and restarted simpler block GMRES methods.

figure g
figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdaoui, I., Elbouyahyaoui, L. & Heyouni, M. The simpler block CMRH method for linear systems. Numer Algor 84, 1265–1293 (2020). https://doi.org/10.1007/s11075-019-00814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00814-7

Keywords

Mathematics Subject Classification (2010)

Navigation