Skip to main content

Advertisement

Log in

Reviewing the Use of Resilience Concepts in Forest Sciences

  • Hot Topics
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesizing how resilience is defined and assessed.

Recent Findings

Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend.

Summary

Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seidl R, Thom D, Kautz M, Martin-benito D, et.al. Forest disturbances under climate change. Nat Clim Chang. 2017;7:395–402.

  2. Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833–49.

    Google Scholar 

  3. Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev Camb Philos Soc. 2016;91:760–81.

    Google Scholar 

  4. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage. 2010;259:698–709.

    Google Scholar 

  5. Thuiller W. Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol. 2004;10:2020–7.

    Google Scholar 

  6. Thomas CD, Cameron A, Green R, Bakkenes EM, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature. 2004;427:145–8.

    CAS  Google Scholar 

  7. Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, et al. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ. 2016;14:369–78.

    Google Scholar 

  8. Lloret F, Keeling EG, Sala A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos. 2011;120:1909–20.

    Google Scholar 

  9. Seidl R, Vigl F, Rössler G, Neumann M, Rammer W. Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. For Ecol Manage. 2017;388:3–12.

    Google Scholar 

  10. Grassi G, House J, Dentener F, Federici S, Den Elzen M, Penman J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Chang. 2017;7:220–6.

    Google Scholar 

  11. Philp J. Balancing the bioeconomy: supporting biofuels and bio-based materials in public policy. Energy Environ Sci. 2015;8:3063–8 Available from: http://xlink.rsc.org/?DOI=C5EE01864A.

    Google Scholar 

  12. Puettmann KJ, Coates KD, Messier C. A critique of silviculture - managing for complexity. Washington: Island Press; 2009.

    Google Scholar 

  13. Messier C, Puettmann KJ, Coates KD. Managing forests as complex adaptive systems - building resilience to the challenge of global change. 1st ed. Messier C, Puettmann KJ, Coates KD, editors. London: Routledge; 2013.

    Google Scholar 

  14. Spears BM, Ives SC, Angeler DG, Allen CR, Birk S, Carvalho L, et al. Effective management of ecological resilience - are we there yet? J Appl Ecol. 2015;52:1311–5.

    Google Scholar 

  15. DEFRA. The National Adaptation Programme and the Third Strategy for Climate Adaptation Reporting. 2018.

  16. Chambers JC, Beck JL, Campbell S, Carlson J, Christiansen TJ, Clause KJ, et al. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: a strategic multi-scale approach. Gen Tech Report [Internet]. 2016;RMRS-GTR-3:143. Available from: https://www.fs.usda.gov/treesearch/pubs/53201

  17. Brand FS, Jax K. Focusing the meaning(s) of resilience: resilience as a descriptive concept and a boundary object. Ecol Soc. 2007;12.

  18. •• Moser S, Meerow S, Arnott J, Jack-Scott E. The turbulent world of resilience: interpretations and themes for transdisciplinary dialog. Clim Change. 2019;153:21–40 The authors performed a meta-analysis on review papers of resilience. They discuss the challenges in defining resilience and provide guidance around how to engage in a productive dialogue across the different resilience interpretations.

    Google Scholar 

  19. Bone C, Moseley C, Vinyeta K, Bixler RP. Employing resilience in the United States Forest Service. Land Use Policy. Elsevier Ltd. 2016;52:430–8. https://doi.org/10.1016/j.landusepol.2016.01.003.

    Article  Google Scholar 

  20. Pimm SL. The complexity and stability of ecosystems. Nature. 1984;307:321–6.

    Google Scholar 

  21. Holling CS. Resilience and stability of ecological systems. Annu Rev Ecol Syst. 1973;4:1–23.

    Google Scholar 

  22. Boeing G. Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits. Systems. 2016;4:37. https://doi.org/10.3390/systems4040037.

  23. Folke C, Carpenter S, Elmqvist T, Gunderson L, Walker B. Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio. 2002;31:437–40.

    Google Scholar 

  24. • Folke C. Resilience [Internet]. Oxford Res Encycl. 2016:1–63. https://doi.org/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-8This encyclopedia article gives a useful explanation of the history of resilience as a term and how it has evolved.

  25. Quinlan AE, Berbés-Blázquez M, Haider LJ, Peterson GD. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J Appl Ecol. 2016;53:677–87.

    Google Scholar 

  26. Walker B, Holling CS, Carpenter SR, Kinzig A. Resilience, adaptability and transformability in social – ecological systems. Ecol Soc. 2004;9:5 Available from: http://www.ecologyandsociety.org/vol9/iss2/art5/.

    Google Scholar 

  27. Holling CS, Gunderson LH. Panarchy: understanding transformations in human and natural systems: Island Press; 2002.

  28. Reyer CPO, Brouwers N, Rammig A, Brook BW, Epila J, Grant RF, et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J Ecol. 2015;103:5–15.

    Google Scholar 

  29. Brown ED, Williams BK. Resilience and resource management. Environ Manag Springer US. 2015;56:1416–27.

    Google Scholar 

  30. Xu L, Marinova D, Guo X. Resilience thinking: a renewed system approach for sustainability science. Sustain Sci. 2015;10:123–38.

    Google Scholar 

  31. Newton AC, Cantarello E. Restoration of forest resilience: an achievable goal? New For. Springer Netherlands. 2015;46:645–68.

    Google Scholar 

  32. Rist L, Moen J. Sustainability in forest management and a new role for resilience thinking. For Ecol Manag. Elsevier B.V. 2013:310, 416–27. https://doi.org/10.1016/j.foreco.2013.08.033.

  33. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience. 2001;51:933–8.

    Google Scholar 

  34. OECD. Environment monographs 83 - OECD core set of indicators for environmental performance reviews. Paris; 1993.

  35. Team RC. R: a language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2018. Available from: https://www.r-project.org/

    Google Scholar 

  36. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package [Internet]. R package version 2.5–4.; 2019. Available from: https://cran.r-project.org/package=vegan

  37. Wickham H. ggplot2: elegant graphics for data analysis [Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org

  38. Arnan X, Rodrigo A, Retana J. Post-fire recovery of Mediterranean ground ant communities follows vegetation and dryness gradients. J Biogeogr. 2006;33:1246–58.

    Google Scholar 

  39. Rivest D, Paquette A, Shipley B, Reich PB, Messier C. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct Ecol. 2015;29:570–8.

    Google Scholar 

  40. Roccaforte JP, Sánchez Meador A, Waltz AEM, Gaylord ML, Stoddard MT, Huffman DW. Delayed tree mortality, bark beetle activity, and regeneration dynamics five years following the Wallow Fire, Arizona, USA: assessing trajectories towards resiliency. For Ecol Manag. 2018;428:20–6.

    Google Scholar 

  41. Roovers P, Verheyen K, Hermy M, Gulinck H. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl Veg Sci. 2004;7:111–8.

    Google Scholar 

  42. Royer-Tardif S, Bradley RL, Parsons WFJ. Evidence that plant diversity and site productivity confer stability to forest floor microbial biomass. Soil Biol Biochem Elsevier Ltd. 2010;42:813–21. https://doi.org/10.1016/j.soilbio.2010.01.018.

    Article  CAS  Google Scholar 

  43. Rubio-Cuadrado Á, Bravo-Oviedo A, Mutke S, Del Río M. Climate effects on growth differ according to height and diameter along the stem in Pinus pinaster Ait. IForest. 2018;11:237–42.

    Google Scholar 

  44. Rubio-Cuadrado Á, Camarero JJ, del Río M, Sánchez-González M, Ruiz-Peinado R, Bravo-Oviedo A, et al. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest. Agric For Meteorol. Elsevier. 2018;259:48–59. https://doi.org/10.1016/j.agrformet.2018.04.015.

    Article  Google Scholar 

  45. Rydgren AK, Økland RH, Hestmark G. Disturbance severity and community resilience in a boreal forest. Ecology. 2004;85:1906–15.

    Google Scholar 

  46. Savage M, Mast JN. How resilient are southwestern ponderosa pine forests after crown fires? Can J For Res [Internet]. 2005;35:967–77. https://doi.org/10.1139/x05-028.

    Article  Google Scholar 

  47. Schäfer C, Grams TEE, Rötzer T, Feldermann A, Pretzsch H. Drought stress reaction of growth and δ13C in tree rings of European beech and Norway spruce in monospecific versus mixed stands along a precipitation gradient. Forests. 2017;8.

  48. Schaffhauser A, Curt T, Tatoni T. The resilience ability of vegetation after different fire recurrences in Provence. WIT Trans Ecol Environ. 2008;119:297–310.

    Google Scholar 

  49. Arthur CM, Dech JP. Species composition determines resistance to drought in dry forests of the Great Lakes – St. Lawrence forest region of central Ontario. J Veg Sci. 2016;27:914–25.

    Google Scholar 

  50. Selwood KE, Clarke RH, Cunningham SC, Lada H, Mcgeoch MA, Mac NR. A bust but no boom: responses of floodplain bird assemblages during and after prolonged drought. J Anim Ecol. 2015;84:1700–10.

    Google Scholar 

  51. Serra-Maluquer X, Mencuccini M, Martínez-Vilalta J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia. Springer Berlin Heidelberg. 2018;187:343–54. https://doi.org/10.1007/s00442-018-4118-2.

    Article  CAS  Google Scholar 

  52. Shinoda M, Nandintsetseg B, Nachinshonhor UG, Komiyama H. Hotspots of recent drought in Asian steppes. Reg Environ Chang. 2014;14:103–17.

    Google Scholar 

  53. Silva Pedro M, Rammer W, Seidl R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia. 2015;177:619–30.

    Google Scholar 

  54. Sohn JA, Saha S, Bauhus J. Potential of forest thinning to mitigate drought stress: a meta-analysis. For Ecol Manag. Elsevier B.V. 2016;380:261–73. https://doi.org/10.1016/j.foreco.2016.07.046.

    Article  Google Scholar 

  55. Stevens-Rumann CS, Kemp KB, Higuera PE, Harvey BJ, Rother MT, Donato DC, et al. Evidence for declining forest resilience to wildfires under climate change. Ecol Lett. 2018;21:243–52.

    Google Scholar 

  56. Taeger S, Zang C, Liesebach M, Schneck V, Menzel A. Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manag. Elsevier B.V. 2013;307:30–42. https://doi.org/10.1016/j.foreco.2013.06.053.

    Article  Google Scholar 

  57. Temperli C, Hart SJ, Veblen TT, Kulakowski D, Hicks JJ, Andrus R. Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains? For Ecol Manag. Elsevier B.V. 2014;334:53–63. https://doi.org/10.1016/j.foreco.2014.08.028.

    Article  Google Scholar 

  58. Thompson ID, Okabe K, Parrotta JA, Brockerhoff E, Jactel H, Forrester DI, et al. Biodiversity and ecosystem services: lessons from nature to improve management of planted forests for REDD-plus. Biodivers Conserv. 2014;23:2613–35.

    Google Scholar 

  59. Trouvé R, Bontemps JD, Collet C, Seynave I, Lebourgeois F. Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees - Struct Funct. 2017;31:517–29.

    Google Scholar 

  60. Bates JD, Davies KW. Seasonal burning of juniper woodlands and spatial recovery of herbaceous vegetation. For Ecol Manag. Elsevier B.V. 2016;361:117–30. https://doi.org/10.1016/j.foreco.2015.10.045.

    Article  Google Scholar 

  61. Van Vierssen N, Wiersma YF. A comparison of all-terrain vehicle (ATV) trail impacts on boreal habitats across scales. Nat Areas J. 2015;35:266–78. https://doi.org/10.3375/043.035.0207.

    Article  Google Scholar 

  62. Vanha-Majamaa I, Shorohova E, Kushnevskaya H, Jalonen J. Resilience of understory vegetation after variable retention felling in boreal Norway spruce forests – a ten-year perspective. For Ecol Manag. 2017;393:12–28. https://doi.org/10.1016/j.foreco.2017.02.040.

    Article  Google Scholar 

  63. Verbesselt J, Umlauf N, Hirota M, Holmgren M, Van Nes EH, Herold M, et al. Remotely sensed resilience of tropical forests. Nat Clim Chang. 2016;6:1028–31.

    Google Scholar 

  64. Vitali V, Büntgen U, Bauhus J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chang Biol. 2017;23:5108–19.

    Google Scholar 

  65. Wakelin SA, Macdonald LM, O’Callaghan M, Forrester ST, Condron LM. Soil functional resistance and stability are linked to different ecosystem properties. Austral Ecol. 2014;39:522–31.

    Google Scholar 

  66. Wardle DA, Jonsson M. Long-term resilience of above- and belowground ecosystem components among contrasting ecosystems. Ecology. 2014;95:1836–49.

    Google Scholar 

  67. Willig MR, Presley SJ, Bloch CP. Long-term dynamics of tropical walking sticks in response to multiple large-scale and intense disturbances. Oecologia. 2011;165:357–68.

    Google Scholar 

  68. Wilson DJ, Ruscoe W, Burrows LE, Mcelrea LM, Choquenot D. An experimental study of the impacts of understory forest vegetation and herbivory by red deer and rodents on seedling establishment and species composition in Waitutu Forest, New Zealand. N Z J Ecol. 2006;30:191–207.

    Google Scholar 

  69. Windmuller-Campione MA, Long JN. If long-term resistance to a spruce beetle epidemic is futile, can silvicultural treatments increase resilience in spruce-fir forests in the Central Rocky Mountains? Forests. 2015;6:1157–78.

    Google Scholar 

  70. Winter MB, Baier R, Ammer C. Regeneration dynamics and resilience of unmanaged mountain forests in the Northern Limestone Alps following bark beetle-induced spruce dieback. Eur J For Res. Springer Berlin Heidelberg. 2015;134:949–68.

    Google Scholar 

  71. Belote RT, Jones RH, Wieboldt TF. Compositional stability and diversity of vascular plant communities following logging disturbance in Appalachian forests. Ecol Appl. 2012;22:502–16.

    Google Scholar 

  72. Wu CH, Lo YH, Blanco JA, Chang SC. Resilience assessment of lowland plantations using an ecosystem modeling approach. Sustain. 2015;7:3801–22.

    Google Scholar 

  73. Xu Y, Shen ZH, Ying LX, Ciais P, Liu HY, Piao SL, et al. The exposure, sensitivity and vulnerability of natural vegetation in China to climate thermal variability (1901–2013): an indicator-based approach. Ecol Indic. Elsevier Ltd. 2016;63:258–72. https://doi.org/10.1016/j.ecolind.2015.12.023.

    Article  Google Scholar 

  74. Yan H, Zhan J, Zhang T. Resilience of forest ecosystems and its influencing factors. Procedia Environ Sci. 2011;10:2201–6. https://doi.org/10.1016/j.proenv.2011.09.345.

    Article  Google Scholar 

  75. Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Chang Biol. 2014;20:3767–79.

    Google Scholar 

  76. Zemp DC, Schleussner CF, Barbosa HMJ, Rammig A. Deforestation effects on Amazon forest resilience. Geophys Res Lett. 2017;44:6182–90.

    Google Scholar 

  77. Abbott I, Le Maitre D. Monitoring the impact of climate change on biodiversity: the challenge of megadiverse Mediterranean climate ecosystems. Austral Ecol. 2010;35:406–22.

    Google Scholar 

  78. Alongi DM. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci. 2008;76:1–13.

    Google Scholar 

  79. Anjos LJS, de Toledo PM. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America. PLoS One. 2018;13:e0194654. https://doi.org/10.1371/journal.pone.0194654.

    Article  CAS  Google Scholar 

  80. Arianoutsou M, Koukoulas S, Kazanis D. Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece. Environ Manag. 2011;47:384–97.

    Google Scholar 

  81. Ayala-Orozco B, Gavito ME, Mora F, Siddique I, Balvanera P, Jaramillo VJ, et al. Resilience of soil properties to land-use change in a tropical dry forest ecosystem. L Degrad Dev. 2017;325:315–25. https://doi.org/10.1002/ldr.2686.

    Article  Google Scholar 

  82. Bernhardt-Römermann M, Gray A, Vanbergen AJ, Bergès L, Bohner A, Brooker RW, et al. Functional traits and local environment predict vegetation responses to disturbance: a pan-European multi-site experiment. J Ecol. 2011;99:777–87.

    Google Scholar 

  83. Bahamondez C, Thompson ID. Determining forest degradation, ecosystem state and resilience using a standard stand stocking measurement diagram: theory into practice. Forestry. 2016;89:290–300.

    Google Scholar 

  84. Baker WL. Transitioning western U.S. dry forests to limited committed warming with bet-hedging and natural disturbances. Ecosphere. 2018;9:e02288. https://doi.org/10.1002/ecs2.2288.

    Article  Google Scholar 

  85. Bhaskar R, Arreola F, Mora F, Martinez-Yrizar A, Martinez-Ramos M, Balvanera P. Response diversity and resilience to extreme events in tropical dry secondary forests. For Ecol Manag. Elsevier. 2018;426:61–71. https://doi.org/10.1016/j.foreco.2017.09.028.

    Article  Google Scholar 

  86. Buma B, Wessman CA. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere. 2011;2:1–13.

    Google Scholar 

  87. Burkhard B, Fath BD, Müller F. Adapting the adaptive cycle: hypotheses on the development of ecosystem properties and services. Ecol Model. Elsevier B.V. 2011;222:2878–90. https://doi.org/10.1016/j.ecolmodel.2011.05.016.

    Article  Google Scholar 

  88. • Cantarello E, Newton AC, Martin PA, Evans PM, Gosal A, Lucash MS. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape. Ecol Evol. 2017;7:9661–75 This article provides a quantitative way to assess forest resilience that includes some of the socio-economic aspects of forests. A good example on how resilience could be measured.

    Google Scholar 

  89. Carrillo-Saucedo SM, Gavito ME, Siddique I. Arbuscular mycorrhizal fungal spore communities of a tropical dry forest ecosystem show resilience to land-use change. Fungal Ecol Elsevier Ltd. 2018;32:29–39. https://doi.org/10.1016/j.funeco.2017.11.006.

    Article  Google Scholar 

  90. Churchill DJ, Larson AJ, Dahlgreen MC, Franklin JF, Hessburg PF, Lutz JA. Restoring forest resilience: from reference spatial patterns to silvicultural prescriptions and monitoring. For Ecol Manag. 2013;291:442–57. https://doi.org/10.1016/j.foreco.2012.11.007.

    Article  Google Scholar 

  91. Clason AJ, Macdonald SE, Haeussler S. Forest response to cumulative disturbance and stress: two decades of change in whitebark pine ecosystems of west-central British Columbia. Écoscience. 2014;21:174–85. https://doi.org/10.2980/21-2-3686.

    Article  Google Scholar 

  92. Cole LES, Bhagwat SA, Willis KJ. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J Ecol. 2015;103:16–30.

    Google Scholar 

  93. Bialecki MB, Fahey RT, Scharenbroch B. Variation in urban forest productivity and response to extreme drought across a large metropolitan region. Urban Ecosyst. 2018;21:157–69.

    Google Scholar 

  94. DeRose RJ, Long JN. Resistance and resilience: a conceptual framework for silviculture. For Sci [Internet]. 2014;60:1205–12. https://doi.org/10.5849/forsci.13-507.

    Article  Google Scholar 

  95. Craven D, Filotas E, Angers VA, Messier C. Evaluating resilience of tree communities in fragmented landscapes: linking functional response diversity with landscape connectivity. Divers Distrib. 2016;22:505–18.

    Google Scholar 

  96. Ding H, Pretzsch H, Schütze G, Rötzer T. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol. 2017;19:709–19.

    CAS  Google Scholar 

  97. Dodd M, Barker G, Burns B, Didham R, Innes J, King C, et al. Resilience of New Zealand indigenous forest fragments to impacts of livestock and pest mammals. N Z J Ecol. 2011;35:83–95.

    Google Scholar 

  98. Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M. Can forest management based on natural disturbances maintain ecological resilience? Can J For Res. 2006;36:2285–99. https://doi.org/10.1139/x06-132.

    Article  Google Scholar 

  99. Estevo CA, Nagy-Reis MB, Silva WR. Urban parks can maintain minimal resilience for Neotropical bird communities. Urban For Urban Green Elsevier. 2017;27:84–9. https://doi.org/10.1016/j.ufug.2017.06.013.

    Article  Google Scholar 

  100. García-López JM, Allué C. A phytoclimatic-based indicator for assessing the inherent responsitivity of the European forests to climate change. Ecol Indic. 2012;18:73–81.

    Google Scholar 

  101. Gazol A, Ribas M, Gutiérrez E, Camarero JJ. Aleppo pine forests from across Spain show drought-induced growth decline and partial recovery. Agric For Meteorol . Elsevier B.V. 2017;232:186–94. https://doi.org/10.1016/j.agrformet.2016.08.014.

    Article  Google Scholar 

  102. Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob Ecol Biogeogr. 2017;26:166–76.

    Google Scholar 

  103. Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, et al. Forest resilience to drought varies across biomes. Glob Chang Biol. 2018;24:2143–58.

    Google Scholar 

  104. Bihn JH, Verhaagh M, Brändle M, Brandl R. Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biol Conserv. 2008;141:733–43.

    Google Scholar 

  105. Girard F, Payette S, Gagnon R. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. J Biogeogr. 2008;35:529–37.

    Google Scholar 

  106. Granda E, Gazol A, Camarero JJ. Functional diversity differently shapes growth resilience to drought for co-existing pine species. J Veg Sci. 2018;29:265–75.

    Google Scholar 

  107. Guimarães H, Braga R, Mascarenhas A, Ramos TB. Indicators of ecosystem services in a military Atlantic Forest area, Pernambuco—Brazil. Ecol Indic Elsevier. 2017;80:247–57. https://doi.org/10.1016/j.ecolind.2017.05.030.

    Article  Google Scholar 

  108. Halofsky JS, Halofsky JE, Burcsu T, Hemstrom MA. Dry forest resilience varies under simulated climate-management scenarios in a central Oregon, USA landscape. Ecol Appl. 2014;24:1908–25.

    Google Scholar 

  109. Halpin CR, Lorimer CG. Trajectories and resilience of stand structure in response to variable disturbance severities in northern hardwoods. For Ecol Manag. Elsevier B.V. 2016;365:69–82. https://doi.org/10.1016/j.foreco.2016.01.016.

    Article  Google Scholar 

  110. Hernandez-Montilla MC, Martinez-Morales MA, Vanegas GP, De Jong BHJ. Assessment of hammocks (Petenes) resilience to sea level rise due to climate change in Mexico. PLoS One. 2016;11.

  111. Hood SM, Baker S, Sala A. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecol Appl. 2016;26:1984–2000. https://doi.org/10.1002/eap.1363.

    Article  Google Scholar 

  112. Ibarra JT, Martin M, Cockle KL, Martin K. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas. Sci Rep. 2017;7:1–9.

    CAS  Google Scholar 

  113. Jaramillo VJ, Martínez-Yrízar A, Maass M, Nava-Mendoza M, Castañeda-Gómez L, Ahedo-Hernández R, et al. Hurricane impact on biogeochemical processes in a tropical dry forest in western Mexico. For Ecol Manag. Elsevier. 2018;426:72–80. https://doi.org/10.1016/j.foreco.2017.12.031.

    Article  Google Scholar 

  114. Johnson AB, Winker K. Short-term hurricane impacts on a neotropical community of marked birds and implications for early- stage community resilience. PLoS One. 2010;5.

  115. Borkenhagen A, Cooper DJ. Tolerance of fen mosses to submergence, and the influence on moss community composition and ecosystem resilience. J Veg Sci. 2018;29:127–35.

    Google Scholar 

  116. Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M. Fire, climate change, and forest resilience in interior Alaska. This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Can J For Res. 2010;40:1302–12. https://doi.org/10.1139/X10-061.

    Article  Google Scholar 

  117. Kaarlejärvi E, Hoset KS, Olofsson J. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate. Glob Chang Biol. 2015;21:3379–88.

    Google Scholar 

  118. Kerkhoff AJ, Enquist BJ. The implications of scaling approaches for understanding resilience and reorganization in ecosystems. Bioscience. 2007;57:489–99 http://academic.oup.com/bioscience/article/57/6/489/236142/The-Implications-of-Scaling-Approaches-for.

    Google Scholar 

  119. Knudby A, Jupiter S, Roelfsema C, Lyons M, Phinn S. Mapping coral reef resilience indicators using field and remotely sensed data. Remote Sens. 2013;5:1311–34.

    Google Scholar 

  120. Leuteritz TEJ, Ekbia HR. Not all roads lead to resilience: a complex systems approach to the comparative analysis of tortoises in arid ecosystems. Ecol Soc. 2008;13 www.ecologyandsociety.org/vol13/iss1/art1/.

  121. Luce C, Morgan P, Dwire K, Isaak D, Holden Z, Rieman B. Climate change, forests, fire, water, and fish: building resilient landscapes, streams, and managers. Gen. Tech. Rep. RMRS-GTR-290. Fort Collins, CO; 2012.

  122. Ludwig JA, Coughenour MB, Liedloff AC, Dyer R. Modelling the resilience of Australian savanna systems to grazing impacts. Environ Int. 2001;27:167–72.

    CAS  Google Scholar 

  123. Magnuszewski P, Ostasiewicz K, Chazdon R, Salk C, Pajak M, Sendzimir J, et al. Resilience and alternative stable states of tropical forest landscapes under shifting cultivation regimes. PLoS One. 2015;10:1–20.

    Google Scholar 

  124. Magruder M, Chhin S, Palik B, Bradford JB. Thinning increases climatic resilience of red pine. Can J For Res. 2013;43:878–89. https://doi.org/10.1139/cjfr-2013-0088.

    Article  Google Scholar 

  125. Bottero A, D’Amato AW, Palik BJ, Bradford JB, Fraver S, Battaglia MA, et al. Density-dependent vulnerability of forest ecosystems to drought. J Appl Ecol. 2017;54:1605–14.

    Google Scholar 

  126. Malika VS, Lindsey G, Katherine JW. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecol Monogr. 2009;79:557–74.

    Google Scholar 

  127. Mallik AU, Kreutzweiser DP, Spalvieri CM, Mackereth RW. Understory plant community resilience to partial harvesting in riparian buffers of central Canadian boreal forests. For Ecol Manag. Elsevier B.V. 2013;289:209–18. https://doi.org/10.1016/j.foreco.2012.09.039.

    Article  Google Scholar 

  128. Martínez-Vilalta J, López BC, Loepfe L, Lloret F. Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia. 2012;168:877–88.

    Google Scholar 

  129. Mitchell PJ, O’Grady AP, Pinkard EA, Brodribb TJ, Arndt SK, Blackman CJ, et al. An ecoclimatic framework for evaluating the resilience of vegetation to water deficit. Glob Chang Biol. 2016;22:1677–89.

    Google Scholar 

  130. Montúfar R, Anthelme F, Pintaud JC, Balslev H. Disturbance and resilience in tropical American palm populations and communities. Bot Rev. 2011;77:426–61.

    Google Scholar 

  131. Moris JV, Vacchiano G, Ascoli D, Motta R. Alternative stable states in mountain forest ecosystems: the case of European larch (Larix decidua) forests in the western Alps. J Mt Sci. 2017;14:811–22.

    Google Scholar 

  132. Nitschke CR, Innes JL. A tree and climate assessment tool for modelling ecosystem response to climate change. Ecol Model. 2008;210:263–77.

    Google Scholar 

  133. Pardini R, de Bueno AA, Gardner TA, Prado PI, Metzger JP. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One. 2010;5.

  134. Ponce Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature Nature Publishing Group. 2013;494:349–52. https://doi.org/10.1038/nature11836.

    Article  CAS  Google Scholar 

  135. Reyes G, Kneeshaw D. Ecological resilience: is it ready for operationalisation in forest management? In: Daniels JA, editor. Adv Environ Res. New York: Nova Science Publishers, Inc.; 2014. p. 195–212.

    Google Scholar 

  136. Broncano MJ, Retana J, Rodrigo A. Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in northeastern Spain. Plant Ecol. 2005;180:47–56.

    Google Scholar 

  137. Sakschewski B, Von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, et al. Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Chang. 2016;6:1032–6.

    Google Scholar 

  138. Salamon-Albert É, Abaligeti G, Ortmann-Ajkai A. Functional response trait analysis improves climate sensitivity estimation in beech forests at a trailing edge. Forests. 2017;8.

  139. Sánchez-Pinillos M, Coll L, De Cáceres M, Ameztegui A. Assessing the persistence capacity of communities facing natural disturbances on the basis of species response traits. Ecol Indic Elsevier Ltd. 2016;66:76–85. https://doi.org/10.1016/j.ecolind.2016.01.024.

    Article  Google Scholar 

  140. Sánchez-Salguero R, Camarero JJ, Rozas V, Génova M, Olano JM, Arzac A, et al. Resist, recover or both? Growth plasticity in response to drought is geographically structured and linked to intraspecific variability in Pinus pinaster. J Biogeogr. 2018;45:1126–39.

    Google Scholar 

  141. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. Nature. 2001;413:591–6.

    CAS  Google Scholar 

  142. Schirpke U, Kohler M, Leitinger G, Fontana V, Tasser E, Tappeiner U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst Serv The Authors. 2017;26:79–94. https://doi.org/10.1016/j.ecoser.2017.06.008.

    Article  Google Scholar 

  143. Seidl R, Rammer W, Spies TA. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl. 2014;24:2063–77.

    Google Scholar 

  144. Sharma A, Goyal MK. Assessment of ecosystem resilience to hydroclimatic disturbances in India. Glob Chang Biol. Elsevier. 2018;24:e432–41. https://doi.org/10.1016/j.jhydrol.2018.07.079.

    Article  Google Scholar 

  145. Spasojevic MJ, Bahlai CA, Bradley BA, Butterfield BJ, Tuanmu MN, Sistla S, et al. Scaling up the diversity-resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob Chang Biol. 2016;22:1421–32.

    Google Scholar 

  146. Stampoulis D, Andreadis KM, Granger SL, Fisher JB, Turk FJ, Behrangi A, et al. Assessing hydro-ecological vulnerability using microwave radiometric measurements from WindSat. Remote Sens Environ. Elsevier Inc. 2016;184:58–72. https://doi.org/10.1016/j.rse.2016.06.007.

    Article  Google Scholar 

  147. Bruelheide H, Luginbühl U. Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology. 2009;90:1314–25.

    Google Scholar 

  148. Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP. A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor Ecol. 2014;22:169–77.

    Google Scholar 

  149. Torrico JC, Janssens MJJ. Rapid assessment methods of resilience for natural and agricultural systems. An Acad Bras Cienc. 2010;82:1095–105.

    Google Scholar 

  150. Van De Leemput IA, Van Nes EH, Scheffer M. Resilience of alternative states in spatially extended ecosystems. PLoS One. 2015;10:1–17.

    Google Scholar 

  151. Viglizzo EF, Nosetto MD, Jobbágy EG, Ricard MF, Frank FC. The ecohydrology of ecosystem transitions: a meta-analysis. Ecohydrology. 2015;8:911–21.

    Google Scholar 

  152. Walker XJ, Mack MC, Johnstone JF. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems. Springer US. 2017;20:1137–50.

    Google Scholar 

  153. Wallem PK, Anderson CB, Martínez-Pastur G, Lencinas MV. Using assembly rules to measure the resilience of riparian plant communities to beaver invasion in subantarctic forests. Biol Invasions. 2010;12:325–35.

    Google Scholar 

  154. Waltz AEM, Stoddard MT, Kalies EL, Springer JD, Huffman DW, Meador AS. Effectiveness of fuel reduction treatments: assessing metrics of forest resiliency and wildfire severity after the Wallow Fire, AZ. For Ecol Manag. Elsevier B.V. 2014;334:43–52. https://doi.org/10.1016/j.foreco.2014.08.026.

    Article  Google Scholar 

  155. Wittkuhn RS, McCaw L, Wills AJ, Robinson R, Andersen AN, Van Heurck P, et al. Variation in fire interval sequences has minimal effects on species richness and composition in fire-prone landscapes of south-west Western Australia. For Ecol Manag. Elsevier B.V. 2011;261:965–78. https://doi.org/10.1016/j.foreco.2010.10.037.

    Article  Google Scholar 

  156. Wu T, Kim YS. Pricing ecosystem resilience in frequent-fire ponderosa pine forests. For Policy Econ. Elsevier B.V. 2013;27:8–12. https://doi.org/10.1016/j.forpol.2012.11.002.

    Article  Google Scholar 

  157. Xu C, Liu H, Anenkhonov OA, Korolyuk AY, Sandanov DV, Balsanova LD, et al. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia. Glob Chang Biol. 2017;23:2370–82.

    Google Scholar 

  158. Buma B, Wessman CA. Forest resilience, climate change, and opportunities for adaptation: a specific case of a general problem. For Ecol Manag. Elsevier B.V. 2013;306:216–25. https://doi.org/10.1016/j.foreco.2013.06.044.

    Article  Google Scholar 

  159. Zenner EK, Dickinson YL, Peck JE. Recovery of forest structure and composition to harvesting in different strata of mixed even-aged central Appalachian hardwoods. Ann For Sci. 2013;70:151–9.

    Google Scholar 

  160. Akamani K. A community resilience model for understanding and assessing the sustainability of forest-dependent communities. Hum Ecol Rev. 2012;19:99–109 http://opensiuc.lib.siu.edu/for_articles/1/.

    Google Scholar 

  161. Akamani K, Hall TE. Determinants of the process and outcomes of household participation in collaborative forest management in Ghana: a quantitative test of a community resilience model. J Environ Manag. 2015;147:1–11.

    Google Scholar 

  162. Akamani K, Wilson PI, Hall TE. Barriers to collaborative forest management and implications for building the resilience of forest-dependent communities in the Ashanti region of Ghana. J Environ Manage. 2015;151:11–21.

    Google Scholar 

  163. Ballard HL, Belsky JM. Participatory action research and environmental learning: Implications for resilient forests and communities. Environ Educ Res. 2010;16:611–27.

    Google Scholar 

  164. Beeton TA, Galvin KA. Wood-based bioenergy in western Montana: the importance of understanding path dependence and local context for resilience. Ecol Soc. 2017;22.

  165. Bernetti I, Ciampi C, Fagarazzi C, Sacchelli S. The evaluation of forest crop damages due to climate change. An application of Dempster-Shafer method. J For Econ . Elsevier GmbH. 2011;17:285–97. https://doi.org/10.1016/j.jfe.2011.04.005.

    Article  Google Scholar 

  166. Bowditch EAD, McMorran R, Bryce R, Smith M. Perception and partnership: developing forest resilience on private estates. For Policy Econ. Elsevier. 2019;99:110–22. https://doi.org/10.1016/j.forpol.2017.12.004.

    Article  Google Scholar 

  167. Brown HCP, Sonwa DJ. Diversity within village institutions and its implication for resilience in the context of climate change in Cameroon. Clim Dev Taylor & Francis. 2018;10:448–57.

    Google Scholar 

  168. Chapin FS, Peterson G, Berkes F, Callaghan TV, Angelstam P, Apps M, et al. Resilience and vulnerability of northern regions to social and environmental change. AMBIO. 2004;33:344–9. https://doi.org/10.1579/0044-7447-33.6.344.

    Article  Google Scholar 

  169. Calderon-Aguilera LE, Rivera-Monroy VH, Porter-Bolland L, Martínez-Yrízar A, Ladah LB, Martínez-Ramos M, et al. An assessment of natural and human disturbance effects on Mexican ecosystems: current trends and research gaps. Biodivers Conserv. 2012;21:589–617.

    Google Scholar 

  170. Chapin FS, Lovecraft AL, Zavaleta ES, Nelson J, Robards MD, Kofinas GP, et al. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate. Proc Natl Acad Sci. 2006;103:16637–43. https://doi.org/10.1073/pnas.0606955103.

    Article  CAS  Google Scholar 

  171. Chapin FS, McGuire AD, Ruess RW, Hollingsworth TN, Mack MC, Johnstone JF, et al. Resilience of Alaska’s boreal forest to climatic changeThis article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming. Can J For Res. 2010;40:1360–70. https://doi.org/10.1139/X10-074.

    Article  Google Scholar 

  172. Daniels JM. Assessing socioeconomic resiliency in Washington counties. Portland: Gen. Tech. Rep. - Pacific Northwest Res. Station. USDA For. Serv; 2004.

    Google Scholar 

  173. DasGupta R, Shaw R. An indicator based approach to assess coastal communities’ resilience against climate related disasters in Indian Sundarbans. J Child Fam Stud. 2015;24:85–101.

    Google Scholar 

  174. Dessalegn M. Threatened common property resource system and factors for resilience: Lessons drawn from serege-commons in Muhur, Ethiopia. Ecol Soc. 2016;21.

  175. Doughty CA. Building climate change resilience through local cooperation: a Peruvian Andes case study. Reg Environ Chang. Springer Berlin Heidelberg. 2016;16:2187–97.

    Google Scholar 

  176. Dymond CC, Tedder S, Spittlehouse DL, Raymer B, Hopkins K, McCallion K, et al. Diversifying managed forests to increase resilience. Can J For Res. 2014;44:1196–205. https://doi.org/10.1139/cjfr-2014-0146.

    Article  Google Scholar 

  177. Dymond CC, Spittlehouse DL, Tedder S, Hopkins K, McCallion K, Sandland J. Applying resilience concepts in forest management: a retrospective simulation approach. Forests. 2015;6:4421–38.

    Google Scholar 

  178. Fuller L, Quine CP. Resilience and tree health: a basis for implementation in sustainable forest management. Forestry. 2016;89:7–19.

    Google Scholar 

  179. Hale JD, Pugh TAM, Sadler JP, Boyko CT, Brown J, Caputo S, et al. Delivering a multi-functional and resilient urban forest. Sustain. 2015;7:4600–24.

    Google Scholar 

  180. Candan F, Broquen P. Aggregate stability and related properties in NW Patagonian Andisols. Geoderma . Elsevier B.V. 2009;154:42–7. https://doi.org/10.1016/j.geoderma.2009.09.010.

    Article  CAS  Google Scholar 

  181. Harris CC, McLaughlin W, Brown G, Becker DR. Rural communities in the inland Northwest: an assessment of small rural communities in the interior and upper Columbia River basins. [Internet]. Portland, Oregon; 2000. Available from: https://login.ezproxy.net.ucf.edu/login?auth=shibb&url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00846a&AN=ucfl.024909820&site=eds-live&scope=site%5Cnhttp://purl.access.gpo.gov/GPO/LPS10938

  182. Jarzebski MP, Tumilba V, Yamamoto H. Application of a tri-capital community resilience framework for assessing the social–ecological system sustainability of community-based forest management in the Philippines. Sustain Sci Springer Japan. 2016;11:307–20.

    Google Scholar 

  183. Kelly C, Ferrara A, Wilson GA, Ripullone F, Nolè A, Harmer N, et al. Community resilience and land degradation in forest and shrubland socio-ecological systems: Evidence from Gorgoglione, Basilicata, Italy. Land Use Policy. Elsevier Ltd. 2015;46:11–20. https://doi.org/10.1016/j.landusepol.2015.01.026.

    Article  Google Scholar 

  184. Kim M, You S, Chon J, Lee J. Sustainable land-use planning to improve the coastal resilience of the social-ecological landscape. Sustain. 2017;9:1–21.

    Google Scholar 

  185. Knoot TG, Schulte LA, Tyndall JC, Palik BJ. The state of the system and steps toward resilience of disturbance-dependent oak forests. Ecol Soc. 2010;15:5.

    Google Scholar 

  186. Lyon C. Place systems and social resilience: a framework for understanding place in social adaptation, resilience, and transformation. Soc Nat Resour. 2014;27:1009–23.

    Google Scholar 

  187. Magis K. Community resilience: an indicator of social sustainability. Soc Nat Resour. 2010;23:401–16.

    Google Scholar 

  188. Moen J, Keskitalo ECH. Interlocking panarchies in multi-use boreal forests in Sweden. Ecol Soc. 2010;15.

  189. Nightingale A, Sharma JR. Conflict resilience among community forestry user groups: experiences in Nepal. Disasters. 2014;38:517–39.

    Google Scholar 

  190. Pinkerton EW, Benner J. Small sawmills persevere while the majors close: evaluating resilience and desirable timber allocation in British Columbia, Canada. Ecol Soc. 2013;18.

  191. Carnwath G, Nelson C. Effects of biotic and abiotic factors on resistance versus resilience of Douglas fir to drought. PLoS One. 2017;12:1–19.

    Google Scholar 

  192. Salvati L, De Angelis A, Bajocco S, Ferrara A, Barone PM. Desertification risk, long-term land-use changes and environmental resilience: a case study in Basilicata, Italy. Scottish Geogr J. 2013;129:85–99.

    Google Scholar 

  193. Sarkki S, Heikkinen H. The resilience of communities and nature-based livelihoods in northern Finland. In: Nuttall M, Tervo-Kankare K, Karjalainen T, editors. NGP Yearb 2012 Negot Resour Engag people Human-environment relations North. Oulu; 2012. p. 95–107.

  194. Sarkki S, Ficko A, Wielgolaski F, Abraham E, Bratanova-Doncheva S, Grunewald K, et al. Assessing the resilient provision of ecosystem services by social-ecological systems: introduction and theory. Clim Res [Internet]. 2017;AdvanceVie:1–9. Available from: http://www.int-res.com/abstracts/cr/Resilience in SENSitive mountain FORest ecosystems under environmental change/av2/.

  195. Saxena A, Guneralp B, Bailis R, Yohe G, Oliver C. Evaluating the resilience of forest dependent communities in Central India by combining the sustainable livelihoods framework and the cross scale resilience analysis. Curr Sci. 2016;110:1195–207.

    Google Scholar 

  196. Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, et al. Adapt to more wildfire in western North American forests as climate changes. Proc Natl Acad Sci. 2017;114:4582–90. https://doi.org/10.1073/pnas.1617464114.

    Article  CAS  Google Scholar 

  197. • Seidl R, Spies TA, Peterson DL, Stephens SL, Jeffrey A. Searching for resilience : addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol. 2016;53:120–9 This article studies how resilience can be used in forest management as a response to the changing disturbance regimes. It proposes pathways to manage forests for resilience and ensure the maintanence of the ecosystem service provision.

    Google Scholar 

  198. Singer J, Hoang H, Ochiai C. Post-displacement community resilience: Considering the contribution of indigenous skills and cultural capital among ethnic minority Vietnamese. Asia Pac. Viewp. 2015;56:208–22.

    Google Scholar 

  199. Smith JW, Moore RL, Anderson DH, Siderelis C. Community resilience in Southern Appalachia: a theoretical framework and three case studies. Hum Ecol. 2012;40:341–53.

    Google Scholar 

  200. Ticktin T, Quazi S, Dacks R, Tora M, Mcguigan A, Hastings Z, et al. Linkages between measures of biodiversity and community resilience in Pacific Island agroforests. Conserv Biol. 2018;0:1–11.

  201. Toledo VM, Ortiz-Espejel B, Cortés L, Moguel P, de Jesús Ordoñez M. The multiple use of tropical forests by indigenous peoples in Mexico: a case of adaptive management. Conserv Ecol. 2003;7:9. https://doi.org/10.5751/ES-00524-070309.

    Article  Google Scholar 

  202. Chaer G, Fernandes M, Myrold D, Bottomley P. Comparative resistance and resilience of soil microbial communities and enzyme activities in adjacent native forest and agricultural soils. Microb Ecol. 2009;58:414–24.

    CAS  Google Scholar 

  203. Townsend PA, Masters KL. Lattice-work corridors for climate change: a conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient. Ecol Soc. 2015;20.

  204. Bottero A, D’Amato AW, Palik BJ, Kern CC, Bradford JB, Scherer SS. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, Northern Minnesota. For Sci. 2017;63:94–100. https://doi.org/10.5849/forsci.16-035.

    Article  Google Scholar 

  205. Stuart-Haëntjens E, De Boeck HJ, Lemoine NP, Mänd P, Kröel-Dulay G, Schmidt IK, et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci Total Environ. 2018;636:360–6.

    Google Scholar 

  206. Summerville KS. Forest lepidopteran communities are more resilient to shelterwood harvests compared to more intensive logging regimes. Ecol Appl. 2013;23:1101–12.

    Google Scholar 

  207. Moretti M, Legg C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography (Cop). 2009;32:299–309.

    Google Scholar 

  208. Chergui B, Fahd S, Santos X. Quercus suber forest and Pinus plantations show different post-fire resilience in Mediterranean north-western Africa. Ann For Sci. 2018;75.

  209. Chompuchan C, Lin CY. Assessment of forest recovery at Wu-Ling fire scars in Taiwan using multi-temporal Landsat imagery. Ecol Indic Elsevier. 2017;79:196–206. https://doi.org/10.1016/j.ecolind.2017.04.038.

    Article  Google Scholar 

  210. Creed IF, Spargo AT, Jones JA, Buttle JM, Adams MB, Beall FD, et al. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America. Glob Chang Biol. 2014;20:3191–208.

    Google Scholar 

  211. Curran TJ, Gersbach LN, Edwards W, Krockenberger AK. Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecol. 2008;33:442–50.

    Google Scholar 

  212. Curzon MT, D’Amato AW, Palik BJ. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA. Appl Veg Sci. 2016;19:667–78.

    Google Scholar 

  213. D’Amato AW, Bradford JB, Fraver S, Palik BJ. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol Appl. Wiley Online Library. 2013;23:1735–42.

    Google Scholar 

  214. Dănescu A, Kohnle U, Bauhus J, Sohn J, Albrecht AT. Stability of tree increment in relation to episodic drought in uneven-structured, mixed stands in southwestern Germany. For Ecol Manage. 2018;415–416:148–59.

    Google Scholar 

  215. Danielson TM, Rivera-Monroy VH, Castañeda-Moya E, Briceño H, Travieso R, Marx BD, et al. Assessment of Everglades mangrove forest resilience: implications for above-ground net primary productivity and carbon dynamics. For Ecol Manag Elsevier. 2017;404:115–25. https://doi.org/10.1016/j.foreco.2017.08.009.

    Article  Google Scholar 

  216. Das P, Behera MD, Roy PS. Modeling precipitation dependent forest resilience in India. Int Arch Photogramm Remote Sens Spat Inf Sci. XLII-3, 263–266.

  217. DeClerck F, Barbour M, Sawyer J. Species richness and stand stabilty in conifer forests of the Sierra Nevada. Ecology. 2006;87:2787–99. https://doi.org/10.1890/0012-9658(2006)87[2787:SRASSI]2.0.CO%0Ahttp://0.0.0.2.

    Article  Google Scholar 

  218. Derroire G, Balvanera P, Castellanos-Castro C, Decocq G, Kennard DK, Lebrija-Trejos E, et al. Resilience of tropical dry forests – a meta-analysis of changes in species diversity and composition during secondary succession. Oikos. 2016;125:1386–97.

    Google Scholar 

  219. Di Mauro B, Fava F, Busetto L, Crosta GF, Colombo R. Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data. Int J Appl Earth Obs Geoinf . Elsevier B.V. 2014;32:163–72. https://doi.org/10.1016/j.jag.2014.04.010.

    Article  Google Scholar 

  220. Diaconu D, Kahle HP, Spiecker H. Thinning increases drought tolerance of European beech: a case study on two forested slopes on opposite sides of a valley. Eur J For Res. Springer Berlin Heidelberg. 2017;136:319–28.

    Google Scholar 

  221. Díaz-Delgado R, Lloret F, Pons X, Terradas J. Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology. 2002;83:2293–303. https://doi.org/10.1890/0012-9658(2002)083%5B2293:SEODRI%5D2.0.CO%3B2.

    Article  Google Scholar 

  222. Dörner J, Dec D, Zúñiga F, Sandoval P, Horn R. Effect of land use change on andosol’s pore functions and their functional resilience after mechanical and hydraulic stresses. Soil Tillage Res. 2011;115–116:71–9.

    Google Scholar 

  223. Duveneck MJ, Scheller RM. Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landsc Ecol. Springer Netherlands. 2016;31:669–86.

    Google Scholar 

  224. Dynesius M, Hylander K, Nilsson C. High resilience of bryophyte assemblages in streamside compared to upland forests. Ecology. 2009;90:1042–54.

    Google Scholar 

  225. Fahey RT, Bialecki MB, Carter DR. Tree growth and resilience to extreme drought across an urban land-use gradient. Arboric Urban For. 2013;39:279–85.

    Google Scholar 

  226. Fahey RT, Fotis AT, Woods KD. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock — hardwood forests. Ecol Appl. 2015;25:834–47.

    Google Scholar 

  227. Fernandez-Manso A, Quintano C, Roberts DA. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens Environ . Elsevier Inc. 2016;184:112–23. https://doi.org/10.1016/j.rse.2016.06.015.

    Article  Google Scholar 

  228. García-Romero A, Oropeza-Orozco O, Galicia-Sarmiento L. Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Environ Manag. 2004;34:768–85.

    Google Scholar 

  229. Gazol A, Camarero JJ. Functional diversity enhances silver fir growth resilience to an extreme drought. J Ecol. 2016;104:1063–75.

    Google Scholar 

  230. George JP, Grabner M, Karanitsch-Ackerl S, Mayer K, Weißenbacher L, Schueler S. Genetic variation, phenotypic stability, and repeatability of drought response in European larch throughout 50 years in a common garden experiment. Tree Physiol. 2017;37:33–46.

    Google Scholar 

  231. González-De Vega S, De Las Heras J, Moya D. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: responses of Aleppo pine forests in the short, mid and long term. Sci Total Environ. Elsevier B.V. 2016;573:1171–7. https://doi.org/10.1016/j.scitotenv.2016.03.115.

    Article  CAS  Google Scholar 

  232. Abella SR, Fornwalt PJ. Ten years of vegetation assembly after a North American mega fire. Glob Chang Biol. 2015;21:789–802.

    Google Scholar 

  233. Hancock MH, Legg CJ. Diversity and stability of ericaceous shrub cover during two disturbance experiments: one on heathland and one in forest. Plant Ecol Divers. 2012;5:275–87.

    Google Scholar 

  234. Heer K, Behringer D, Piermattei A, Bässler C, Brandl R, Fady B, et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol Ecol. 2018;27:1428–38.

    CAS  Google Scholar 

  235. Heinimann HR. A concept in adaptive ecosystem management-an engineering perspective. For Ecol Manag. 2010;259:848–56.

    Google Scholar 

  236. Helman D, Lensky IM, Yakir D, Osem Y. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests. Glob Chang Biol. 2017;23:2801–17.

    Google Scholar 

  237. Herrero A, Zamora R. Plant responses to extreme climatic events: a field test of resilience capacity at the southern range edge. PLoS One. 2014;9:1–12.

    Google Scholar 

  238. Hirota M, Holmgren M, Van Nes EH, Scheffer M. Global resilience of tropical forest. Science(80- ). 2011;334:232–5. https://doi.org/10.1126/science.1210657.

    Article  CAS  Google Scholar 

  239. Hoffmann N, Schall P, Ammer C, Leder B, Vor T. Drought sensitivity and stem growth variation of nine alien and native tree species on a productive forest site in Germany. Agric For Meteorol. 2018;256–257:431–44.

    Google Scholar 

  240. Huang W, Fonti P, Larsen JB, Ræbild A, Callesen I, Pedersen NB, et al. Projecting tree-growth responses into future climate: a study case from a Danish-wide common garden. Agric For Meteorol Elsevier. 2017;247:240–51. https://doi.org/10.1016/j.agrformet.2017.07.016.

    Article  Google Scholar 

  241. Jacobs BF. Restoration of degraded transitional (piñon-juniper) woodland sites improves ecohydrologic condition and primes understory resilience to subsequent disturbance. Ecohydrology. 2015;8:1417–28.

    Google Scholar 

  242. Jacquet K, Prodon R. Measuring the postfire resilience of a bird-vegetation system: a 28-year study in a Mediterranean oak woodland. Oecologia. 2009;161:801–11.

    Google Scholar 

  243. Acuña V, Giorgi A, Muñoz I, Sabater F, Sabater S. Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. J North Am Benthol Soc. 2007;26:54–69.

    Google Scholar 

  244. Johnstone JF, McIntire EJB, Pedersen EJ, King G, Pisaric MJF. A sensitive slope: estimating landscape patterns of forest resilience in a changing climate. Ecosphere. 2010;1.

  245. Julio Camarero J, Gazol A, Sangüesa-Barreda G, Cantero A, Sánchez-Salguero R, Sánchez-Miranda A, et al. Forest growth responses to drought at short- and long-term scales in Spain: squeezing the stress memory from tree rings. Front Ecol Evol. 2018;6:1–11. https://doi.org/10.3389/fevo.2018.00009/full.

    Article  Google Scholar 

  246. Karavani A, Boer MM, Baudena M, Colinas C, Díaz-Sierra R, Pemán J, et al. Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities. Ecol Monogr. 2018;88:141–69.

    Google Scholar 

  247. Keyser TL, Brown PM. Drought response of upland oak (Quercus L.) species in Appalachian hardwood forests of the southeastern USA. Ann For Sci [Internet]. Ann For Sci. 2016;73:971–86. https://doi.org/10.1007/s13595-016-0575-0.

    Article  Google Scholar 

  248. Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia. 2011;167:219–28.

    Google Scholar 

  249. Kunz J, Löffler G, Bauhus J. Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. For Ecol Manag. 2018;414:15–27.

    Google Scholar 

  250. Larson AJ, Lutz JA, Gersonde RF, Franklin JF, Hietpas FF. Potential site productivity influences the rate of forest structural development. Ecol Appl. 2008;18:899–910.

    Google Scholar 

  251. Lawrence D, Radel C, Tully K, Schmook B, Schneider L. Untangling a decline in tropical forest resilience: constraints on the sustainability of shifting cultivation across the globe. Biotropica. 2010;42:21–30.

    Google Scholar 

  252. Leão TCC, Lobo D, Scotson L. Economic and biological conditions influence the sustainability of harvest of wild animals and plants in developing countries. Ecol Econ. 2017;140:14–21.

    Google Scholar 

  253. Lebrija-trejos AE, Bongers F, Pérez-garcía EA, Meave JA, Lebrija-trejos E, De Ciencias F, et al. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica. 2008;40:422–31.

    Google Scholar 

  254. Aikio S. The contribution of direct and indirect flows to the resilience of element cycles. Acta Oecologica. 2004;26:129–35.

    Google Scholar 

  255. de Souza LM, Tambosi LR, Romitelli I, Metzger JP. Landscape ecology perspective in restoration projects for biodiversity conservation: a review. Nat Conserv. 2013;11:108–18.

    Google Scholar 

  256. Lin TC, Hamburg SP, Lin KC, Wang LJ, Te Chang C, Hsia YJ, et al. Typhoon disturbance and forest dynamics: lessons from a Northwest Pacific subtropical forest. Ecosystems. 2011;14:127–43.

    CAS  Google Scholar 

  257. Lloret F, Siscart D, Dalmases C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Chang Biol. 2004;10:2092–9.

    Google Scholar 

  258. Lloret F, Estevan H, Vayreda J, Terradas J. Fire regenerative syndromes of forest woody species across fire and climatic gradients. Oecologia. 2005;146:461–8.

    Google Scholar 

  259. Long JN, Windmuller-Campione M, De Rose RJ. Building resistance and resilience: regeneration should not be left to chance. Forests. 2018;9:1–12.

    CAS  Google Scholar 

  260. Lopez-Toledo L, Anten NPR, Endress BA, Ackerly DD, Martínez-Ramos M. Resilience to chronic defoliation in a dioecious understorey tropical rain forest palm. J Ecol. 2012;100:1245–56.

    Google Scholar 

  261. Lucash MS, Scheller RM, Gustafson JE, Sturtevant BR. Spatial resilience of forested landscapes under climate change and management. Landsc Ecol. Springer Netherlands. 2017;32:953–69.

    Google Scholar 

  262. Madrigal-González J, Herrero A, Ruiz-Benito P, Zavala MA. Resilience to drought in a dry forest: insights from demographic rates. For Ecol Manage. 2017;389:167–75.

    Google Scholar 

  263. Malinga GM, Valtonen A, Nyeko P, Roininen H. High resilience of galling insect communities to selective and clear-cut logging in a tropical rainforest. Int J Trop Insect Sci. 2014;34:277–86.

    Google Scholar 

  264. Marqués L, Camarero JJ, Gazol A, Zavala MA. Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. For Ecol Manage. 2016;381:157–67.

    Google Scholar 

  265. Andivia E, Natalini F, Fernández M, Alejano R, Vázquez-Piqué J. Contrasting holm oak provenances show different field performance but similar resilience to drought events eight years after planting in a mediterranean environment. IForest. 2018;11:259–66.

    Google Scholar 

  266. Martínez-Yrízar A, Jaramillo VJ, Maass M, Búrquez A, Parker G, Álvarez-Yépiz JC, et al. Resilience of tropical dry forest productivity to two hurricanes of different intensity in western Mexico. For Ecol Manage. 2018;426:53–60.

    Google Scholar 

  267. Matusick G, Ruthrof KX, Fontaine JB, Hardy GESJ. Eucalyptus forest shows low structural resistance and resilience to climate change-type drought. J Veg Sci. 2016;27:493–503.

    Google Scholar 

  268. McLaren KP, McDonald MA. Coppice regrowth in a disturbed tropical dry limestone forest in Jamaica. For Ecol Manage. 2003;180:99–111.

    Google Scholar 

  269. Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P. Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manage. 2015;339:22–33.

    Google Scholar 

  270. Moretti M, Duelli P, Obrist MK. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia. 2006;149:312–27.

    Google Scholar 

  271. Na-U-Dom T, Garcia M, Mo X. Ecosystem resilience to drought and temperature anomalies in the Mekong River Basin. IOP Conf. Ser.: Earth Environ. Sci. 2017;68:12012–7.

    Google Scholar 

  272. Navarro-Cerrillo RM, Rodriguez-Vallejo C, Silveiro E, Hortal A, Palacios-Rodríguez G, Duque-Lazo J, et al. Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated Pinus pinaster stands. Forests. 2018;9:1–18.

    Google Scholar 

  273. O’Brien MJ, Ong R, Reynolds G. Intra-annual plasticity of growth mediates drought resilience over multiple years in tropical seedling communities. Glob Chang Biol. 2017;23:4235–44.

    Google Scholar 

  274. O’Hara KL. Multiaged forest stands for protection forests: concepts and applications. For. Snow Landsc. Res. 80, 1:45–55.

  275. O’Hara KL, Ramage BS. Silviculture in an uncertain world: utilizing multi-aged management systems to integrate disturbance. Forestry. 2013;86:401–10.

    Google Scholar 

  276. Andivia E, Madrigal-González J, Villar-Salvador P, Zavala MA. Do adult trees increase conspecific juvenile resilience to recurrent droughts? Implications for forest regeneration. Ecosphere. 2018;9:e02282. https://doi.org/10.1002/ecs2.2282.

    Article  Google Scholar 

  277. Pérez-Ramos IM, Zavala MA, Marañón T, Díaz-Villa MD, Valladares F. Dynamics of understorey herbaceous plant diversity following shrub clearing of cork oak forests: a five-year study. For Ecol Manag. 2008;255:3242–53.

    Google Scholar 

  278. Pilaš I, Medved I, Medak J, Medak D. Response strategies of the main forest types to climatic anomalies across Croatian biogeographic regions inferred from FAPAR remote sensing data. For Ecol Manage. 2014;326:58–78.

    Google Scholar 

  279. Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, Becknell JM, et al. Biomass resilience of Neotropical secondary forests. Nature Nature Publishing Group. 2016;530:211–4. https://doi.org/10.1038/nature16512.

    Article  CAS  Google Scholar 

  280. Pretzsch H, Schütze G, Uhl E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 2013;15:483–95.

    CAS  Google Scholar 

  281. Príncipe A, van der Maaten E, van der Maaten-Theunissen M, Struwe T, Wilmking M, Kreyling J. Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L.) in response to late spring frost in southern Germany. Trees - Struct Funct. 2017;31:743–51.

    Google Scholar 

  282. Proença V, Pereira HM, Vicente L. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation. Acta Oecologica Elsevier Masson SAS. 2010;36:626–33. https://doi.org/10.1016/j.actao.2010.09.008.

    Article  Google Scholar 

  283. Rais A, van de Kuilen JWG, Pretzsch H. Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany. Eur J For Res. 2014;133:1043–56.

    Google Scholar 

  284. Reiners WA, Driese KL, Fahey TJ, Gerow KG. Effects of three years of regrowth inhibition on the resilience of a clear-cut Northern Hardwood Forest. Ecosystems. 2012;15:1351–62.

    Google Scholar 

  285. Reis SM, de Oliveira EA, Elias F, Gomes L, Morandi PS, Marimon BS, et al. Resistance to fire and the resilience of the woody vegetation of the “Cerradão” in the “Cerrado”–Amazon transition zone. Rev Bras Bot. 2017;40:193–201.

    Google Scholar 

  286. Riva MJ, Liniger H, Valdecantos A, Schwilch G. Impacts of land management on the resilience of mediterranean dry forests to fire. Sustain. 2016;8.

  287. Balint PJ, Stewart RE, Desai A, Walters LC. Wicked environmental problems. Washington: Island Press; 2011.

    Google Scholar 

  288. Müller F, Bergmann M, Dannowski R, Dippner JW, Gnauck A, Haase P, et al. Assessing resilience in long-term ecological data sets. Ecol Indic . Elsevier Ltd. 2016;65:10–43. https://doi.org/10.1016/j.ecolind.2015.10.066.

    Article  Google Scholar 

  289. Weichselgartner J, Kelman I. Geographies of resilience: challenges and opportunities of a descriptive concept. Prog Hum Geogr. 2015;39:249–67.

    Google Scholar 

  290. Brown K. Global environmental change I: a social turn for resilience? Prog Hum Geogr. 2014;38:107–17.

    Google Scholar 

  291. Cote M, Nightingale AJ. Resilience thinking meets social theory: situating social change in socio-ecological systems (SES) research. Prog Hum Geogr. 2012;36:475–89.

    Google Scholar 

  292. Olsson L, Jerneck A, Thoren H, Persson J, O’Byrne D. Why resilience is unappealing to social science: theoretical and empirical investigations of the scientific use of resilience. Sci Adv. 2015;1:1–12.

    Google Scholar 

  293. Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, et al. Trajectories of the Earth system in the anthropocene. Proc Natl Acad Sci U S A. 2018;115:8252–9.

    Google Scholar 

  294. Rist L, Felton A, Nyström M, Troell M, Sponseller RA, Bengtsson J, et al. Applying resilience thinking to production ecosystems. Ecosphere. 2014;5:1–11.

    Google Scholar 

  295. Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J. Resilience thinking: integrating resilience, adaptability and transformability. Ecol Soc. 2010;15.

  296. Gunderson LH. Ecological resilience-in theory and application. Annu Rev Ecol Syst. 2000;31:425–39.

    Google Scholar 

  297. Verstraeten G, Vancampenhout K, Desie E, De Schrijver A, Hlava J, Schelfhout S, et al. Tree species effects are amplified by clay content in acidic soils. Soil Biol Biochem . Elsevier. 2018;121:43–9. https://doi.org/10.1016/j.soilbio.2018.02.021.

    Article  CAS  Google Scholar 

  298. Scheffer M, Hirota M, Holmgren M, Van Nes EH, Chapin FS. Thresholds for boreal biome transitions. Proc Natl Acad Sci. 2012;109:21384–9. https://doi.org/10.1073/pnas.1219844110.

    Article  Google Scholar 

  299. Hirota M, Holmgren M, Van Nes EH, Scheffer M. Global resilience of tropical forest and Savanna to critical transitions. Science (80- ). 2011, 232LP;334:–235 http://science.sciencemag.org/content/334/6053/232.abstract.

  300. Carpenter S, Walker B, Anderies JM, Abel N. From metaphor to measurement: resilience of what to what? Ecosystems. 2001;4:765–81.

    Google Scholar 

  301. Wolfslehner B, Vacik H. Evaluating sustainable forest management strategies with the Analytic Network Process in a Pressure-State-Response framework. J Environ Manag. 2008;88:1–10.

    Google Scholar 

  302. Yousefpour R, Bredahl Jacobsen J, Thorsen BJ, Meilby H, Hanewinkel M, Oehler K. A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann For Sci. 2012;69:1–15.

    Google Scholar 

  303. ISO I. Risk management–principles and guidelines. Int Organ Stand Geneva, Switz. 2009;

  304. Hanewinkel M, Hummel S, Albrecht A. Assessing natural hazards in forestry for risk management: a review. Eur J For Res. 2011;130:329–51.

    Google Scholar 

  305. Park J, Seager TP, Rao PSC. Lessons in risk- versus resilience-based design and management. Integr Environ Assess Manag. 2011;7:396–9.

    Google Scholar 

  306. Messier C, Puettmann K, Chazdon R, Andersson KP, Angers VA, Brotons L, et al. From management to stewardship: viewing forests as complex adaptive systems in an uncertain world. Conserv Lett. 2015;8:368–77.

    Google Scholar 

  307. Biggs R, Schlüter M, Biggs D, Bohensky EL, BurnSilver SB, Cundill G, et al. Toward principles for enhancing the resilience of ecosystem services. Ssrn. 2012;

  308. Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC, et al. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol Evol. 2010;25:241–9.

    Google Scholar 

  309. Hosseini S, Barker K, Ramirez-Marquez JE. A review of definitions and measures of system resilience. Reliab Eng Syst Saf. 2016;145:47–61.

    Google Scholar 

  310. Roostaie S, Nawari N, Kibert CJ. Sustainability and resilience: a review of definitions, relationships, and their integration into a combined building assessment framework. Build Environ Elsevier. 2019;154:132–44. https://doi.org/10.1016/j.buildenv.2019.02.042.

    Article  Google Scholar 

Download references

Funding

German Federal Ministry of Food and Agriculture provided the funding for this research (project SURE—SUstaining and Enhancing REsilience of European Forests).

Laura Nikinmaa and Marcus Lindner have received part of their salaries from a project that was funded by the German Federal Ministry of Food and Agriculture.

Rupert Seidl acknowledges support from the Austrian Science Fund (FWF) through START grant Y895-B25.

Alistair Jump, Bart Muys, Elena Cantarello and Georg Winkel received no funding for their work on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nikinmaa.

Ethics declarations

Conflict of Interest

Laura Nikinmaa and Marcus Lindner have received part of their salaries from the project “Sustaining and Enhancing the Resilience of the European Forests” that is funded by the German Federal Ministry of Food and Agriculture.

Alistair Jump, Bart Muys, Elena Cantarello, Georg Winkel and Rupert Seidl declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hot Topics

Electronic Supplementary Material

ESM 1

(XLSX 696 kb)

ESM 2

(XLSX 178 kb)

ESM 3

(XLSX 124 kb)

ESM 4

(XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikinmaa, L., Lindner, M., Cantarello, E. et al. Reviewing the Use of Resilience Concepts in Forest Sciences. Curr Forestry Rep 6, 61–80 (2020). https://doi.org/10.1007/s40725-020-00110-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-020-00110-x

Keywords

Navigation