Skip to main content
Log in

A Mass-Balance Tool for Monitoring Potential Dissolved Sulfur Oxidation Risks in Mining Impacted Waters

质量平衡法监测受采矿影响水体的潜在溶解态硫氧化风险

Ein Massenbilanzwerkzeug zur Überwachung potentieller Risiken durch Oxydation gelösten Schwefels in bergbaubeinflußten Wässern

Una herramienta de balance de masa para monitorear los riesgos potenciales de oxidación de azufre disuelto en aguas afectadas por la minería

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Sulfur oxidation intermediate compounds (SOIs) in mine tailings reservoir water are linked to adverse environmental impacts, such as acidity, toxicity, and oxygen consumption, and can lead to regulatory non-compliance. Their prediction and management has largely focused on a subset of SOI compounds referred to as thiosalts (SnOx2−), with thiosulfate (S2O32−) presumed to be the dominant thiosalt species, yet no published study to date has determined if SnOx2−and, specifically S2O32−, dominate SOIs in these waters. The objectives of this study were to: (1) determine sulfur mass balance across a range of mining impacted waters; (2) evaluate whether SnOx2−compounds dominate the SOI pool for these waters; and (3) compare current industry analytical methods for thiosalts determination with a new approach proposed here. From 2014 to 2018, 52 water samples were collected from four Canadian base metal mine water management systems in Ontario, Manitoba, and Newfoundland. These samples were characterized for total sulfur (TotS) as well as individual sulfur species (∑H2S, S0, SO32−, S2O32−, S3O62−, S4O62−, and SO42−). Thiosulfate was consistently found to represent only a minor component of TotS, with an average relative percentage of ≈ 4% across all samples. The reactive sulfur pool, (Sreact), defined here as all sulfur compounds capable of oxidation, was significant and variable, averaging 30 ± 25% of the S budget. A direct comparison of Sreact concentrations to thiosalts concentrations determined by either of the two currently available analytical methods (indirect acid titration method or direct S2O32− method by ion chromatography) indicated that Sreact was significantly higher (p < 0.05) for a selected suite of samples (n = 6) collected in 2018. These results indicate that currently available methods may underreport the concentrations of oxidizable sulfur compounds in tailings reservoir water caps and receiving environmental waters. Sreact provides a conservative, economically viable and directly comparable measurement to monitor potential dissolved sulfur oxidation risks in water discharged to receiving environments.

Abstract

尾矿库水中硫被氧化的中间化合物(SOIs)具有产酸, 致毒和消耗氧等负面环境作用,使尾矿库水质不符合相关法规要求。尾矿库水的预测和管理主要集中于SOI的子集含硫盐(SnOx2−), 而人们又假定硫代硫酸盐(S2O32−)是最主要含硫盐(SnOx2−), 但是目前还没有公开文献证明SnOx2−(尤其S2O32−)是水中硫的主要物质形式。研究目的: (1) 确定受采矿影响水域范围内的硫质量平衡; (2) 评价SnOx2−是否是水体中SOI主要物质形式; (3) 对比目前工业分析中使用的与文章新提出的含硫盐确定方法。在2014年至2018年, 从加拿大安大略省, 马尼托巴省和纽芬兰的四个有色金属矿山废水管理系统采集了52个水样。分析了这些样品的总硫(TotS)和单种形式硫 (∑H2S, S0, SO32−, S2O32−, S3O62−, S4O62−和SO42−)。发现硫代硫酸盐始终仅代表总硫(TotS)的一小部分, 约占所有样本平均相对百分比的4%。我们定义活性硫总量(Sreact)为所有能够氧化的含硫化合物; 它重要且变化较大,平均占估算总S的30 ±  25%。Sreact浓度与两种分析方法(间接酸滴定法或直接S2O32−离子色谱法)确定的含硫盐浓度的直接对比显示, 2018年采集的一组样本(n = 6)的Sreact明显更高(p < 0.05)。结果表明,现有方法可能低估了尾矿库水和受纳环境水体中可氧化的含硫化合物的浓度。Sreact为监测接收水体的潜在溶解性硫氧化风险提供一种稳妥, 经济可行和可直接类比的测量方法。

Abstract

Zusammenfassung:

Schwefelverbindungen intermediären Oxydationsgrades (SOIs) in Reservoiren von Bergbauaufbereitungsschlämmen sind mit nachteiligen Umwelteinflüssen verbunden, darunter Säure, Giftigkeit und Sauerstoffverbrauch. Sie können zu Überschreitungen der Genehmigung führen. Ihre Vorhersage und Handhabung bezogen sich zumeist auf einen Teil von SOI Verbindungen, welche Thiosalze (SnOx2−) genannt werden, wobei vermutet wird, daß Thiosulfat (S2O32−) die wichtigste Thiosalzspezies ist. Bis heute gibt es jedoch keine publizierte Studie, welche nachweist, ob (SnOx2−) und besonders (S2O32−) die SOIs in solchen Wässern dominieren. Die Ziele dieser Studie waren: (1) die Bestimmung der Schwefelmassenbilanz einer Reihe von bergbaubeeinflussten Wässern; (2) die Prüfung ob (SnOx2−) Verbindungen in der Masse der SOI Verbindungen in diesen Wässern dominieren; und (3) ein Vergleich der jetzt in der Industrie für die Thiosalze üblichen analytischen Methoden mit dem neuen Zugang, welcher hier vorgeschlagen wird. Zwischen 2014 bis 2018 wurden aus vier kanadischen Wasserbehandlungssystemen von Buntmetallminen in Ontario, Manitoba, und Newfoundland 52 Wasserproben entnommen. Diese Proben wurden durch Bestimmung von Gesamtschwefel (TotS) sowie individueller S-Spezies (∑H2S, S0, SO32−, S2O32−, S3O62−, S4O62−, und SO42−) charakterisiert. Thiosulfat war durchwegs ein geringer Anteil des (TotS), mit einem durchschnittlichen relativen Prozentanteil aller Proben von ≈ 4%. Der reaktive Schwefelanteil, (Sreact), hier definiert als alle oxydierbaren Schwefelverbindungen, war bedeutend und schwankend, bei durchschnittlich 30 ± 25% des Gesamtschwefels. Ein direkter Vergleich der (Sreact) Konzentration mit Thiosulfatkonzentrationen bestimmt durch eine der beiden zur Zeit verfügbaren analytischen Methoden (indirekte Säuretitration, oder S2O32− Methode durch Ionenchromatographie) zeigte, daß (Sreact) augewählter Proben (n = 6, 2018) signifikant höher war (p < 0.05). Diese Ergebnisse lassen vermuten, daß die heute verfügbaren Methoden möglicherweise die Konzentration oxydierbarer Schwefelverbindungen in der Wasserbedeckung der Reservoire von Bergbauaufbereitungsschlämmen unterschätzen, welche auch Umweltwasser aufnehmen. (Sreact) ist eine konservative, wirtschaftliche und direkt vergleichbare Messung, um potentielle Risiken der Oxydation gelösten Schwefels in Wasser zu überwachen, das in die Umgebung abgeleitet wird.

Abstract

Resumen

Los compuestos intermedios de oxidación de azufre (SOI) en el agua de reservorio de relaves mineros, están vinculados a los impactos ambientales adversos, como la acidez, la toxicidad y el consumo de oxígeno, y pueden conducir al incumplimiento de la normativa. Su predicción y gestión se han centrado en gran medida en un subconjunto de compuestos de SOI denominados tiosulfatos (SnOx2−), con el tiosulfato (S2O32−) presumiblemente como la especie dominante de los tiosulfatos; sin embargo, ningún estudio publicado hasta la fecha ha determinado si SnOx2− y, específicamente S2O32−, dominan las SOI en estas aguas. Los objetivos de este estudio fueron: (1) determinar el balance de masa de azufre en un rango de aguas afectadas por la minería; (2) evaluar si los compuestos SnOx2 dominan el conjunto SOI para estas aguas; y (3) comparar los métodos analíticos actuales de la industria para la determinación de tiosulfatos con un nuevo enfoque propuesto aquí. De 2014 a 2018, se recolectaron 52 muestras de agua de cuatro sistemas canadienses de gestión de aguas de minas de metales básicos en Ontario, Manitoba y Terranova. Estas muestras se caracterizaron por azufre total (TotS) así como por especies individuales de azufre (∑H2S, S0, SO32−, S2O32−, S3O62−, S4O62− y SO42−). Se descubrió que el tiosulfato representaba solo un componente menor de TotS, con un porcentaje relativo promedio de ≈ 4% en todas las muestras. El grupo de azufre reactivo (Sreact), definido aquí como todos los compuestos de azufre capaces de oxidación, fue significativo y variable, con un promedio de 30 ± 25% del presupuesto de S. Una comparación directa de las concentraciones de Sreact con las concentraciones de tiosulfatos determinadas por cualquiera de los dos métodos analíticos disponibles actualmente (método de titulación de ácido indirecto o método S2O32 directo por cromatografía iónica), indicó que Sreact fue significativamente mayor (p < 0.05) para un conjunto seleccionado de muestras (n = 6) recolectada en 2018. Estos resultados indican que los métodos disponibles actualmente pueden subvalorar las concentraciones de compuestos de azufre oxidables en los casquetes de agua de los depósitos de relaves y en las aguas ambientales. Sreact proporciona medidas conservadoras, económicamente viables y directamente comparables para monitorear los riesgos potenciales de oxidación de azufre disuelto en el agua descargada a los ambientes receptores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azizi M, Biard PF, Couvert A, Ben Amor M (2015) Competitive kinetics study of sulfide oxidation by chlorine using sulfite as reference compound. Chem Eng Res Des 94:141–152. https://doi.org/10.1016/j.cherd.2014.07.023

    Article  Google Scholar 

  • Borilova S, Mandl M, Zeman J, Kucera J, Pakostova E, Janiczek O, Tuovinen OH (2018) Can sulfate be the first dominant aqueous sulfur species formed in the oxidation of pyrite by Acidithiobacillus ferrooxidans? Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.03134

    Article  Google Scholar 

  • Boulegue J (1977) Equilibria in a sulfide rich water from Enhgien-les-Bains, France. Geochim Cosmochim Acta 41:1751–1758

    Article  Google Scholar 

  • Druschel GK, Hamers RJ, Banfield JF (2003) Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe3+. Geochim Cosmochim Acta 67:4457–4469. https://doi.org/10.1016/S0016-7037(03)00388-0

    Article  Google Scholar 

  • Edwards AC, Ferrier RC, Miller JD (1992) The contribution of sulphate to total sulphur in a range of natural water samples. Hydrol Sci J. https://doi.org/10.1080/02626669209492587

    Article  Google Scholar 

  • Ferrer M, Guazzaroni M, Richter M, Alcaide M, Dillewijn PV, Molina-henares MA, Eugenio LD, Martínez V, Marques S, Rojo F, Santero E, Genilloud O, Pérez-pérez J, Rosselló-móra R, Ramos JL (2011) Taxonomic and functional metagenomic profiling of the microbial community in the anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, central Spain). Microb Ecol. https://doi.org/10.1007/s00248-011-9903-y

    Article  Google Scholar 

  • Findlay AJ (2016) Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett 363:1–12. https://doi.org/10.1093/femsle/fnw103

    Article  Google Scholar 

  • Fuseler K, Cypionka H (1995) Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus. Archiv Microbiol 164:104–109

    Article  Google Scholar 

  • Gourdon R, Funtowicz N (1998) Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors. Bioprocess Eng 18:241–249

    Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473. https://doi.org/10.1016/S0923-2508(03)00114-1

    Article  Google Scholar 

  • Kamyshny A, Zilberbrand M, Ekeltchik I, Voitsekovski T, Gun J, Lev O (2008) Speciation of Polysulfides and zerovalent sulfur in sulfide-rich water wells in southern and central Isreal. Aquat Geochem 14:171–192. https://doi.org/10.1007/s10498-008-9031-6

    Article  Google Scholar 

  • Kamyshny A, Borkenstein CG, Ferdelman TG (2009) Protocol for quantitative detection of elemental sulfur and polysulfide zero-valent sulfur distribution in natural aquatic samples. Geostand Geoanal Res 33:415–435

    Article  Google Scholar 

  • Klatt JM, Polerecky L (2015) Assessment of the stoichiometry and efficiency of CO2 fixation coupled to reduced sulfur oxidation. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00484

    Article  Google Scholar 

  • Komorowicz I, Bara D (2016) Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and lower Silesia provinces, Poland. Environ Monit Assess 188:1–22. https://doi.org/10.1007/s10661-016-5477-y

    Article  Google Scholar 

  • La C, Cedex P, Studies M (1982) Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim Cosmochim Acta 46:453–464

    Article  Google Scholar 

  • Lichtschlag A, Kamyshny A, Ferdelman TG (2013) Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea). Geochim Cosmochim Acta 105:130–145. https://doi.org/10.1016/j.gca.2012.11.025

    Article  Google Scholar 

  • Lin H, Chen G, Zhu S, Chen Y, Chen D, Xu W (2013) The interaction of CuS and Halothiobacillus HT1 biofilm in microscale using synchrotron radiation-based techniques. Int J Mol Sci 14:11113–11124. https://doi.org/10.3390/ijms140611113

    Article  Google Scholar 

  • Luther GW III, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Res 38:S1121–S1137. https://doi.org/10.1016/S0198-0149(10)80027-5

    Article  Google Scholar 

  • Luther GW, Glazer BT, Hohmann L, Popp JI, Taillefert M, Rozan TF, Brendel PJ, Theberge M (2001) Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J Environ Monit 3:61–66. https://doi.org/10.1039/b006499h

    Article  Google Scholar 

  • Makhija R, Hitchen A (1979) The titrimetric determination of sulphate, thiosulphate and polythionates in mining effluents. Anal Chim Acta 105:375–382

    Article  Google Scholar 

  • Mangold S, Valdés J, Holmes DS, Dopson M (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2:1–18. https://doi.org/10.3389/fmicb.2011.00017

    Article  Google Scholar 

  • Miranda-trevino JC, Pappoe M, Hawboldt K (2013) Technology the importance of thiosalts speciation : review of analytical methods, kinetics, and treatment the importance of thiosalts speciation : review. Crit Rev Environ Sci Technol 43:2013–2070. https://doi.org/10.1080/10643389.2012.672047

    Article  Google Scholar 

  • Mora M, Lopez L, Lafuente J, Perez J, Kleerebezem R, Mora M, Luis RL, van Loosdrecht MCM, Gamisans X, Gabriel D (2016) Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Water Res 89:282–292. https://doi.org/10.1016/j.watres.2015.11.061

    Article  Google Scholar 

  • Pokorna B, Mandl M, Borilova S, Ceskova P, Markova R, Janiczek O (2007) Kinetic constant variability in bacterial oxidation of elemental sulfur. Appl Environ Microbiol 73:3752–3754. https://doi.org/10.1128/AEM.02549-06

    Article  Google Scholar 

  • Prietzel J, Cronauer H, Strehl C (1996) Determination of dissolved total sulfur in aqueous extracts and seepage water of forest soils. Int J Environ Anal Chem 64:193–203. https://doi.org/10.1080/03067319608028929

    Article  Google Scholar 

  • Reese BK, Finneran DW, Mills HJ, Zhu MX, Morse JW (2011) Examination and refinement of the determination of aqueous hydrogen sulfide by the methylene blue method. Aquat Geochem 17:567–582. https://doi.org/10.1007/s10498-011-9128-1

    Article  Google Scholar 

  • Reisman DJ, Sundaram V, Al-Abed SR, Allen D (2007) Statistical validation of sulfate quantification methods used for analysis of acid mine drainage. Talanta 71:303–311. https://doi.org/10.1016/j.talanta.2006.04.002

    Article  Google Scholar 

  • Rethmeier J, Rabenstein A, Langer M, Fischer U (1997) Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods 1. J Chromatogr A 760:295–302

    Article  Google Scholar 

  • Risacher FF, Morris PK, Arriaga D, Goad C, Colenbrander T, Slater GF, Warren LA (2018) Applied geochemistry the interplay of methane and ammonia as key oxygen consuming constituents in early stage development of Base Mine Lake, the first demonstration oil sands pit lake. Appl Environ Microbiol 93:49–59

    Google Scholar 

  • Rivett LS, Oko U (1971) Tailings disposal, generation of acidity from pyrrhotite and limestone neutralization of wastewater at Falconbridge’ s Onaping Mines. Can Min Metall Trans 74:186–191

    Google Scholar 

  • Robberecht H, Van Grieken R (1982) Selenium in environmental waters: determinatio n, speciation and concentration levels. Talanta 29:833–844

    Google Scholar 

  • Rozan TF, Theberge SM, Luther G (2000) Quantifying elemental sulfur (S0), bisulfide (HS−) and polysulfides (Sx2−) using a voltammetric method. Anal Chim Acta 415:175–184

    Article  Google Scholar 

  • Warren LA, Norlund KLI, Bernier L (2008) Microbial thiosulphate reaction arrays: the interactive roles of Fe (III), O2 and microbial strain on disproportionation and oxidation pathways. Geobiology 6:461–470. https://doi.org/10.1111/j.1472-4669.2008.00173.x

    Article  Google Scholar 

  • Warren LA, Kendra KE, Brady AL, Slater GF (2016) Sulfur biogeochemistry of an oil sands composite tailings deposit. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.01533

    Article  Google Scholar 

  • Whaley-Martin KJ, Koch I, Moriarty M, Reimer KJ (2012) Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ Sci Technol Lett 46:3110–3118

    Article  Google Scholar 

  • Whaley-Martin K, Jessen GL, Nelson TC, Mori JF, Apte S, Jarolimek C, Warren LA (2019) The potential role of Halothiobacillus spp. in sulfur oxidation and acid generation in circum-neutral mine tailings reservoirs. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00297

    Article  Google Scholar 

  • Wolkoff A, Larose RH (1975) Separation and detection of low concentrations of polythionates by high speed anion exchange liquid chromatography. Anal Chem 47:1003–1008

    Article  Google Scholar 

  • Wu P, Wu X, Hou X et al (2009) Inductively coupled plasma optical emission spectrometry in the vacuum ultraviolet region. Appl Spectrosc Rev 44:507–533. https://doi.org/10.1080/05704920903069398

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all on-site mine personnel who aided in sample collection and processing including, but not limited to Nicole Gisby, Shirley Neault, Helga Sonnenberg, Lisa Ramilo, Peter Mercer, Sean Breen, Landice Yestrau, Ryan Trudeau, Jay Cooper and Joel Nilsen. Research was supported by the Genome Canada Large Scale Applied Research Program (OGI-124) and Ontario Research Fund–Research Excellence (RE08-007) grants to LAW. The National Sciences and Engineering Research Council CREATE Mine of Knowledge post-doctoral fellowship to KWM is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley A. Warren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whaley-Martin, K., Marshall, S., Nelson, T.E.C. et al. A Mass-Balance Tool for Monitoring Potential Dissolved Sulfur Oxidation Risks in Mining Impacted Waters. Mine Water Environ 39, 291–307 (2020). https://doi.org/10.1007/s10230-020-00671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00671-0

Keywords

Navigation