Skip to main content
Log in

Experimental Investigation of the Pressure and Water Pressure Responses of an Inclined Shaft Wall During Grouting

Experimentelle Untersuchung der Reaktion von Druck und Wasserdruck in der Wandung eines geneigten Schachts während der Verpressung

Investigación experimental de las respuestas de presión y presión de agua a una pared inclinada de pozo durante la lechada de cal

斜井壁后注浆的井壁受力与水压响应试验

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A scale model test with a geometric scale of 1:20 was carried out to simulate chemical grouting in a geological prototype of the auxiliary inclined shaft of the Jinjitan coal mine, Shaanxi Province, to address water and sand inrush accidents. The pressure responses in the surrounding sand layers to grouting of an inclined shaft was experimentally investigated using soil pressure and pore water pressure sensors. Grout propagation was observed by slicing the stabilized mass after grouting. The results show that grouting of the roof, side wall, and floor of the inclined shaft caused pressures to both increase and decrease; after the slurry fully gelled, the pressure on the roof and side wall of the inclined shaft was effectively released, but accumulated on the floor. The water pressure on the roof and side wall of the inclined shaft went through three stages: low amplitude fluctuations, high amplitude fluctuations, and a sudden drop. The floor water pressure experienced stages of pressure fluctuation, maintenance, and recovery. The propagation and solidification of the slurry increased the pressure on the shaft wall. By analyzing the solidified grouted mass, we found that contact among particles within the penetration radius can be classified into three types: a gelled slurry skeleton, an integrated granular particle and slurry skeleton, and a granular particle skeleton. Moreover, the reinforcement mechanism of grouting is mainly fracturing and permeation. The results imply that the designed grouting pressure in the floor should be slightly less than in the roof and side wall to avoid secondary failure of the floor. During actual grouting, fracturing occurs first under high grouting pressure, while permeation occurs as grouting pressure decreases.

Zusammenfassung

Zur Untersuchung von Wasser- und Sandeinbrüche wurden in einem geologischen Prototyp des Nebenschachts des Jinjitan Kohlebergwerks, Provinz Shaanxi (China), an einem maßstabsgetreuen Modell (Maßstab 1:20) Tests zur Simulation der chemischen Verpressung durchgeführt. Die Reaktion des Drucks in umgebenden Sandschichten des geneigten Schachts wurde experimentell unter Verwendung von Bodendruck- und Porenwasserdrucksensoren untersucht. Die Ausbreitung der Verpressung wurde durch Betrachtung der ausgehärteten und in Scheiben geschnittenen Masse untersucht. Die Ergebnisse zeigen, dass die Verpressung von Boden, Decke und Seitenwänden des geneigten Schachts sowohl eine Erhöhung als auch eine Verminderung des Drucks nach sich zog. Nachdem die Suspension vollständig ausgehärtet war, nahm der Druck auf Schachtdecke und Seitenwänden ab, aber akkumulierte am Boden. Der Wasserdruck auf Decke und Seitenwänden des geneigten Schachts durchlief drei Zustände: Fluktuationen mit geringer Amplitude, Fluktuationen mit hoher Amplitude und einen plötzlichen Abfall. Der Wasserdruck des Bodens wies Druckfluktuationen, Erhaltung und Erholung auf. Die Ausbreitung und Verfestigung der Suspension erhöhte den Druck auf die Schachtwände. Durch Analyse der verfestigten Verpressungsmasse konnte der Partikelkontakt innerhalb des Ausbreitungsradius in drei Typen unterschieden werden: Einem vergelten Schlammskelett, einem integrierten körnigen Partikel-Schlamm Skelett und einem körnigen Partikelskelett. Der verstärkende Mechanismus bei der Verpressung ist vornehmlich Aufbrechen und Durchdringen. Die Ergebnisse legen nahe, dass der Verpressungsdruck im Boden etwas geringer als in Decke und Seitenwänden konzipiert werden sollte, um sekundäres Versagen des Bodens zu vermeiden. Während des eigentlichen Vorgangs kommt es bei hohem Verpressungsdruck zum Aufbrechen, wohingegen die Durchdringung bei nachlassendem Druck auftritt.

Resumen

Se realizó una prueba de modelo a escala con una escala geométrica de 1:20 para simular la lechada química en un prototipo geológico del pozo inclinado auxiliar de la mina de carbón Jinjitan, provincia de Shaanxi, para abordar los accidentes de irrupción de agua y arena. Las respuestas de presión en las capas de arena circundantes a la lechada de un pozo inclinado, se investigaron experimentalmente utilizando sensores de presión de suelo y presión de agua de poro. La propagación de la lechada se observó cortando la masa estabilizada después de la lechada. Los resultados muestran que la lechada del techo, la pared lateral y el piso del eje inclinado causó que las presiones aumentaran y disminuyeran; después de que la suspensión se gelificó por completo, la presión sobre el techo y la pared lateral eje inclinado se liberó efectivamente, pero se acumuló en el piso. La presión del agua en el techo y la pared lateral del pozo inclinado pasó por tres etapas: fluctuaciones de baja amplitud, fluctuaciones de alta amplitud y una caída repentina. La presión del agua del piso experimentó etapas de fluctuación de presión, mantenimiento y recuperación. La propagación y solidificación de la suspensión aumentó la presión sobre la pared del pozo. Al analizar la masa solidificada, descubrimos que el contacto entre las partículas dentro del radio de penetración se puede clasificar en tres tipos: un esqueleto de suspensión gelificada, un esqueleto integrado de partículas granulares y de suspensión, y un esqueleto granular de partículas. Además, el mecanismo de refuerzo de la lechada es principalmente fractura y permeación. Los resultados implican que la presión de lechada diseñada en el piso debe ser ligeramente menor que en el techo y la pared lateral para evitar fallas secundarias en el piso. Durante la lechada real, la fractura ocurre primero bajo una alta presión de la lechada mientras que la permeación ocurre a medida que disminuye la presión.

摘要

为预防突水涌砂事故,以陕西金鸡滩煤矿副斜井事故点为地质原型,采用1:20几何相似比室内模型,进行壁后化学注浆试验。利用土压力和孔隙水压力传感器,监测斜井壁后注浆过程周围砂层的压力响应。通过注浆后固砂体切片分析,观察浆液扩散特征。试验显示,斜井顶板,侧壁和底板注浆引起了压力几次升降变化。在斜井壁后浆液充分凝固后,斜井顶板和侧壁受力有效缓释,底板压力累积。斜井顶板和侧壁的水压经历了低振幅波动,高振幅波动和突然下降三个阶段。底板水压经历了压力波动,维持和恢复三个阶段。浆液的扩散和凝固增加了井壁压力。从注浆固砂体切片图像发现,渗透半径范围内的颗粒间接触方式可分为三类:浆液骨架型,砂颗粒与浆液骨架过渡型和砂颗粒骨架型。化学浆液注浆机理主要是劈裂和渗透。试验表明,为避免斜井壁后注浆过程的斜井底板二次破坏,底板设计注浆压力应略小于顶板和侧壁设计注浆压力。在实际注浆工程中,高注浆压力首先使砂层发生劈裂,注浆压力降低后发生渗透。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Amadei B, Savage WZ (2001) An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures. Int J Rock Mech Min Sci 38(2):285–296

    Article  Google Scholar 

  • Castro RL, Basaure K, Palma S, Vallejos J (2017) Geotechnical characterization of ore related to mud rushes in block caving mining. J S Afr Inst Min Metall 117(3):275–284

    Article  Google Scholar 

  • Cheng W, Ni J, Shen J, Wang Z (2018) Modeling of permeation and fracturing grouting in sand: laboratory investigations. J Test Eval 46(5):2067–2082

    Article  Google Scholar 

  • Cochard S, Ancey C (2009) Experimental investigation of the spreading of viscoplastic fluids on inclined planes. J Non-Newton Fluid Mech 158(1–3):73–84

    Article  Google Scholar 

  • Cui GX (1998) Failure mechanism and prevention techniques of vertical shaft wall in special formation conditions. Mine Constr Technol 19(1):28–32 (in Chinese)

    Google Scholar 

  • Dai G, Bird RB (1981) Radial flow of a Bingham fluid between two fixed circular disks. J Non-Newton Fluid 8(3):349–355

    Article  Google Scholar 

  • Funehag J, Thörn J (2018) Radial penetration of cementitious grout—laboratory verification of grout spread in a fracture model. Tunn Undergr Space Technol 72:228–232

    Article  Google Scholar 

  • Gustafson G, Claesson J, Fransson Å (2013) Steering parameters for rock grouting. J Appl Math 2013:1–9

    Article  Google Scholar 

  • Guo MW (2010) Experimental study on diffusion mechanism of chemical slurry in porous media with high pressure closed environment. China Univ of Mining and Technology, Xuzhou, pp 39–132 (in Chinese, abstract in English)

    Google Scholar 

  • Haza ZF, Harahap ISH, Dakssa LM (2013) Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base. Nat Hazards 68(2):587–611

    Article  Google Scholar 

  • Håkansson U (1993) Rheology of fresh cement-based grouts. Royal Institute of Technology, Stockholm

    Google Scholar 

  • Karol RH (2003) Chemical grouting and soil stabilization, 3rd edn. Marcel Dekker-Taylor and Francis, New York

    Book  Google Scholar 

  • Krizek RJ, Perez T (1985) Chemical grouting in soils permeated by water. J Geotech Eng 111(7):898–915

    Article  Google Scholar 

  • Liang YK, Sui WH, Qi JF (2019) Experimental investigation on chemical grouting of inclined fracture to control sand and water flow. Tunn Undergr Space Technol 83:82–90

    Article  Google Scholar 

  • Luo PP, Li SY, Fan B (2009) Study on flow model for Binghamian grouts in tilted single fracture. Mem Muroran Inst Tech 59:207–211

    Google Scholar 

  • Maag E (1938) Ueber die Verfestigung und Dichtung des Baugrundes (Injektionen). Erdbaukurs de ETH, Sammlung der Vorträge herausgegeben vom Institut für Erdbauforschung der eidg. Techn Hochschule Zürich, Zürich

    Google Scholar 

  • Minto JM, MacLachlan E, Mountassir GE, Lunn RJ (2016) Rock fracture grouting with microbially induced carbonate precipitation. Water Resour Res 52(11):8827–8844

    Article  Google Scholar 

  • Mohammed M, Pusch R, Knutsson S (2015) Study of cement-grout penetration into fractures under static and oscillatory conditions. Tunn Undergr Space Technol 45:10–19

    Article  Google Scholar 

  • Ni XH, Sui WH, Guan YZ, Wang DL, Du Y (2005) Research on prevention and control technology of shaft rupture in coal mine shaft. China Univ of Mining and Technology Press, Xuzhou (in Chinese)

    Google Scholar 

  • Qian ZW, Jiang ZQ, Guan YZ, Yue N (2018) Mechanism and remediation of water and sand inrush induced in an inclined shaft by large-tonnage vehicles. Mine Water Environ 37(4):849–855

    Article  Google Scholar 

  • Ruan WJ (2005) Research on diffusion of grouting and basic properties of grouts. Chin J Geotech Eng 27(1):69–73 (in Chinese, abstract in English)

    Google Scholar 

  • Sui WH, Liu JY, Hu W, Qi JF, Zhan KY (2015) Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water. Tunn Undergr Space Technol 50:239–249

    Article  Google Scholar 

  • Vallejos J, Basaure K, Palma S, Castro RL (2017) Methodology for evaluation of mud rush risk in block caving mining. J S Afr Inst Min Metall 117(5):491–497

    Article  Google Scholar 

  • Wang DL (2011) Mechanism of hydro-dynamically chemical grouting in porous media. China Univ of Mining and Technology, Xuzhou (in Chinese, abstract in English)

    Google Scholar 

  • Xiao F, Zhao Z, Chen H (2017) A simplified model for predicting grout flow in fracture channels. Tunn Undergr Space Technol 70:11–18

    Article  Google Scholar 

  • Xu Y, Du M, Luo Y (2019) Using water injection to prevent shaft failure in the Jining no. 3 coalmine, China. Mine Water Environ 38(1):60–71

    Article  Google Scholar 

  • Xu Z, Liu C, Zhou X, Gao G, Feng X (2019) Full-scale physical modelling of fissure grouting in deep underground rocks. Tunn Undergr Space Technol 89:249–261

    Article  Google Scholar 

  • Yu W, Li P, Zhang X, Wang Q (2014) Model test research on hydrodynamic grouting for single fracture with variable inclinations. Rock Soil Mech 35(8):2137–2143 (in Chinese, abstract in English)

    Google Scholar 

  • Yuan SC, Zhang GL, Zheng GS, Cai FH, Qian ZW (2018) Grouting treatment of water and sand inrush into an inclined shaft in aeolian sand layer. J China Coal Soc 43(4):1104–1110 (in Chinese, abstract in English)

    Google Scholar 

  • Yuan SC, Zheng GS, Qian ZW, Cai FH (2019) Research on water and sand inrush mechanism and repair technology of shaft rupture in inclined shaft. Coal Sci Technol 47(5):113–118 (in Chinese, abstract in English)

    Google Scholar 

  • Zhang GL (2011) High-pressure permeability and microscopic mechanism of chemical grouting solid sand body. China Univ of Mining and Technology, Xuzhou, pp 46–80 (in Chinese, abstract in English)

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant 41877238) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanghua Sui.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1. Supplementary Figure 1 Location of the Jinjitan coal mine (PDF 164 kb)

Supplementary file2. Supplementary Figure 2 Floor heave of the inclined shaft at 140–360 m due to grouting (PDF 12 kb)

Supplementary file3. Supplementary Figure 3 X-ray diffraction of aeolian sand (PDF 65 kb)

Supplementary file4. Supplementary Figure 4 Particle size distribution of aeolian sand (PDF 11 kb)

Supplementary file5. Supplementary Figure 5 Gel time of chemical grouts at different temperatures (PDF 6257 kb)

10230_2020_675_MOESM6_ESM.pdf

Supplementary file6. Supplementary Figure 6 Pressure-time curves of pressure sensors no. 2–6 on the side wall (PDF 2158 kb)

Supplementary file7 (PDF 2406 kb)

Supplementary file8 (PDF 2309 kb)

Supplementary file9 (PDF 2345 kb)

Supplementary file10 (PDF 2403 kb)

10230_2020_675_MOESM11_ESM.pdf

Supplementary file11. Supplementary Figure 7 Pore water pressure-time curve of water pressure sensor no. 2–6 on the side wall (PDF 63 kb)

Supplementary file12 (PDF 62 kb)

Supplementary file13 (PDF 67 kb)

Supplementary file14 (PDF 67 kb)

Supplementary file15 (PDF 64 kb)

10230_2020_675_MOESM16_ESM.pdf

Supplementary file16. Supplementary Figure 8 Mechanical model of curtain grouting behind the inclined shaft wall (PDF 53 kb)

Supplementary file17. Supplementary Figure 9 Grouted sand section (PDF 7631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yuan, S., Sui, W. et al. Experimental Investigation of the Pressure and Water Pressure Responses of an Inclined Shaft Wall During Grouting. Mine Water Environ 39, 256–267 (2020). https://doi.org/10.1007/s10230-020-00675-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00675-w

Keywords

Navigation