Skip to main content
Log in

A Snapshot of Coal Mine Drainage Discharge Limits for Conductivity, Sulfate, and Manganese across the Developed World

  • Review
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Coal mine drainage (CMD) negatively affects aquatic ecosystems around the world. This article presents the current state of regulatory guidelines and discharge limits established for selected parameters of concern in CMD: specific conductance (SC), SO42−, and Mn. Though not exhaustive, this review provides a representative snapshot of the existing regulatory status in developed nations of North America, Australia, Asia, Europe, and Africa. It was found that most of the nations surveyed have a separate approach to regulating CMD apart from other water quality issues, varying from national or regional guidelines and standards to individual site licenses or permits. In addition, there is broad variability between nations and regions. The selected parameters have a range of required discharge concentrations and in the case of Mn, a variety of categories (i.e. dissolved, total, bioavailable). A few countries use toxicity testing to assist in determining discharge limits, while others take a watershed-based approach to determine mass loading of pollutants, considering the status of the receiving water body and dilution effects. Overall, the myriad approaches encountered underscores the complex and dynamic scientific, ecosystemic, and political landscape in which these regulatory systems have evolved.

Zusammenfassung

Eine Bestandsaufnahme der Grenzwerte für Leitfähigkeit, Sulfat und Mangan aus Kohlenbergwerken in IndustrienationenÜberall auf der Welt wirkt sich Grubenwasser aus Kohlebergwerken negativ auf aquatische Ökosysteme aus, so dass die gesetzlichen Grenzwerte für die Ableitung des Grubenwassers ein bedeutendes Thema sind. Dieser Artikel stellt den aktuellen Stand der Richtlinien und Grenzwerte für ausgewählte Parameter vor, die bei diesem Grubenwasser von Bedeutung sind: elektrische Leitfähigkeit, SO2-4 und Mn. Obwohl diese Übersicht nicht erschöpfend ist, stellt sie eine repräsentative Bestandsaufnahme der bestehenden Regularien in den entwickelten Ländern Nordamerikas, Australiens, Asiens, Europas und Afrikas dar. Es wurde festgestellt, dass die meisten der untersuchten Länder neben anderen Wasserqualitätskriterien einen separaten Ansatz zur Regulierung von Grubenwasser aus Kohlebergwerken cerfolgen, der von nationalen oder regionalen Richtlinien und Normen bis hin zu individuellen Standortlizenzen oder -genehmigungen reicht. Darüber hinaus gibt es eine große Variabilität in den Grenzwerten zwischen den Nationen und den Regionen. Die ausgewählten Parameter haben eine Spannbreite von einzuhaltenden Abflusskonzentrationen und im Falle von Mn eine Vielzahl von Kategorien (gelöst, gesamt, bioverfügbar). Einige wenige Länder verwenden Toxizitätstests, um die Bestimmung von Grenzwerten zu unterstützen. Andere hingegen verfolgen einen auf dem Einzugsgebiet basierten Ansatz zur Bestimmung der Schadstofffrachten wobei sowohl der Zustand des aufnehmenden Gewässers als auch Verdünnungseffekte berücksichtigt werden. Insgesamt unterstreichen die vielfältigen Ansätze die komplexe und dynamische Wissenschafts-, Ökosystem- und Politiklandschaft, in der sich diese Reglungssysteme entwickelt haben.

Resumen

Un breve resumen de los límites de descarga de drenaje de minas de carbón para conductividad, sulfato y manganeso en todo el mundo desarrolladoEl drenaje de minas de carbón (CMD) afecta negativamente a los ecosistemas acuáticos de todo el mundo, lo que hace que los límites reglamentarios de las aguas descargadas sean un tema de suma importancia. Este artículo presenta el estado actual de las pautas regulatorias y los límites de descarga establecidos para los parámetros de interés seleccionados en CMD: conductancia específica (SC), SO 4 2- y Mn. Aunque no es exhaustiva, esta revisión proporciona un resumen representativo del estado regulatorio existente en los países desarrollados de América del Norte, Australia, Asia, Europa y África. Se encontró que la mayoría de las naciones encuestadas tienen un enfoque para regular la CMD, separado de otros problemas de calidad del agua, que varían desde pautas y estándares nacionales o regionales hasta licencias o permisos de sitios individuales. Además, existe una amplia variabilidad en los límites entre naciones y regiones. Los parámetros seleccionados tienen un rango de concentraciones de descarga requeridas y, en el caso de Mn, una variedad de categorías (es decir, disuelto, total, biodisponible). Unos pocos países utilizan pruebas de toxicidad para determinar los límites de descarga, mientras que otros adoptan un enfoque basado en cuencas hidrográficas para determinar la carga masiva de contaminantes, considerando el estado del cuerpo de agua receptor y los efectos de la dilución. En general, los innumerables enfoques encontrados subrayan el complejo y dinámico panorama científico, ecosistémico y político en el que han evolucionado estos sistemas reguladores.

发达国家煤矿废水的电导率、硫酸盐和锰排放标准概览

煤矿废水(CMD) 消极地影响着世界各地水文生态系统,使得煤矿废水排放标准成为一个极重要的话题。文章介绍了现有管理规范和排放标准所规定的煤矿废水(CMD)的电导率(SC)、SO2-4和Mn指标概况。虽未能一一尽举,但给出了北美、澳大利亚、亚洲、欧洲和非洲地区发达国家煤矿废水规范管理的代表性概述。多数被调查国家对煤矿废水(CMD)单独制定了不同于其它水质问题的管理规范,从国家或地区导则与标准到个体采场执照或许可证发放尽显不同。此外,国家之间和地区之间的排放界限标准也存在较大变数。所选择指标既存在一个规定的排放浓度范围也有各自的形态类型变化 (如锰的可溶解、总量和生物有效性形态类型)。一些国家利用毒性试验协助确定排放标准,也有一些国家采用计算流域污染物荷载的方法,考虑接受水体状况和稀释作用而制定。总之,各类方法展示出管理规范逐渐发展起来的复杂、动态、科学、生态和政治前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association, Water Environment Federation (2012) Standard methods for the examination of water and wastewater. 22nd edit, American Public Health Assoc, Washington, DC

  • ANZECC/ARMCANZ (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand) (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

  • Banks D, Younger PL, Arnesen RT, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32(3):157–174. https://doi.org/10.1007/s002540050204

    Article  Google Scholar 

  • Beane SJ, Comber SDW, Rieuwerts J, Long P (2016) Abandoned metal mines and their impact on receiving waters: a case study from southwest England. Chemosphere 153:294–306. https://doi.org/10.1016/j.chemosphere.2016.03.022

    Article  Google Scholar 

  • Belmer N, Tippler C, Davies PJ, Wright IA (2014) Impact of a coal mine waste discharge on water quality and aquatic ecosystems in the Blue Mountains World Heritage area. Proceedings of the 7th Australian Stream Management Conference, Townsville, Queensland, pp 285–291

  • Bian Z, Inyang HI, Daniels LJ, Otto F, Struthers S (2010) Environmental issues from coal mining and their solutions. Min Sci Technol (China) 20(2):215–223. https://doi.org/10.1016/S1674-5264(09)60187-3

    Article  Google Scholar 

  • Blevins DW (1986) Sources of coal-mine drainage and their effects of surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983–1984. U.S. Geological Survey Water Supply Paper 2305. https://doi.org/10.3133/wsp2305

  • Commission European (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun L 372:1–72

    Google Scholar 

  • Commonwealth of Australia (2016) Preventing acid and metalliferous drainage: leading practice sustainable development program for the mining industry. Commonwealth of Australia, Canberra

    Google Scholar 

  • Cormier SM, Suter GW, Zheng L (2013) Derivation of a benchmark for freshwater ionic strength. Environ Toxicol Chem 32(2):263–271. https://doi.org/10.1002/etc.2064

    Article  Google Scholar 

  • Cormier SM, Zheng L, Flaherty CM (2018) Field-based method for evaluating the annual maximum specific conductivity tolerated by freshwater invertebrates. Sci Tot Environ 633:1637–1646. https://doi.org/10.1016/j.scitotenv.2018.01.136

    Article  Google Scholar 

  • Czech Republic (2011) Governmental Decree 23/2011

  • Daniels WL, Zipper CE, Ornorff ZW, Skousen J, Barton CD, McDonald LM, Beck MA (2016) Predicting total dissolved solids release from central Appalachian coal mine spoils. Environ Pollut 216:371–379. https://doi.org/10.1016/j.envpol.2016.05.044

    Article  Google Scholar 

  • Department for Environment, Food and Rural Affairs (2014) Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment. Welsh Government

  • Elphick JR, Davies M, Gilron G, Canaria EC, Lo B, Bailey HC (2011) An aquatic toxicological evaluation of sulfate: the case for considering hardness as a modifying factor in setting water quality guidelines. Environ Toxicol Chem 30(1):247–253. https://doi.org/10.1002/etc.363

    Article  Google Scholar 

  • Environment and Climate Change Canada (2017) Proposed Approach for Coal Mining Effluent Regulations

  • ERMITE Consortium, Younger PL, Wolkersdorfer C (2004) Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water Environ 23(Supplement 1):S2–S80. https://doi.org/10.1007/s10230-004-0028-0

    Article  Google Scholar 

  • Flussgebietsbewirtschaftung Spree-Schwarze Elster (2009) Grundsätze für die länderübergreifende Bewirtschaftung der Flussgebiete Spree, Schwarze Elster und Lausitzer Neiße

  • Gombert P, Sracek O, Koukouzas N, Gzyl G, Valladares ST, Frączek R, Klinger C, Bauerek A, Areces JEÁ, Chamberlain S, Paw K, Pierzchała Ł (2019a) An overview of priority pollutants in selected coal mine discharges in Europe. Mine Water Environ 38(1):16–23. https://doi.org/10.1007/s10230-018-0547-8

    Article  Google Scholar 

  • Gombert P, Sracek O, Koukouzas N, Gzyl G, Valladares ST, Frączek R, Klinger C, Bauerek A, Areces JEÁ, Chamberlain S, Paw K, Pierzchała Ł (2019b) Correction to: an overview of priority pollutants in selected coal mine discharges in Europe. Mine Water Environ 38(2):463–464. https://doi.org/10.1007/s10230-019-00607-3

    Article  Google Scholar 

  • Grmela A, Rapantová N (1998) Experience with coal mine closure in the Czech Republic: mine water problems. NATO-Advanced-Study-Institute on Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security. Matrahaza, Hungary

  • Grmela A, Rapantová N (2002) Protection of groundwater resources quality and quantity in mining areas. In: Fabbri AG, Gaal G, McCammon RB (eds), Deposit and geoenvironmental models for resource exploitation and environmental security: NATO Science Series, Partnership Sub-Series 2: Environ Security 80:385–397. https://doi.org/10.1007/978-94-010-0303-2_19

    Chapter  Google Scholar 

  • Harries J (1997) Acid mine drainage in Australia: its extent and potential future liability. Australian Government Department of the Environment: Supervising Scientist Report 125

  • Hem JD (1985) Study and interpretation of the chemical characteristics of Natural Water. US Geol Surv Water Suppl Pap 2254:263. https://doi.org/10.3133/wsp2254

    Article  Google Scholar 

  • Homer AW (2009) Coal mine safety regulation in China and the USA. J Contemp Asia 39(3):424–439. https://doi.org/10.1080/00472330902944511

    Article  Google Scholar 

  • Hubert E, Wolkersdorfer C (2015) Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water SA 41(4):490–500. https://doi.org/10.4314/wsa.v41i4.08

    Article  Google Scholar 

  • India Ministry of Environment and Forests (1986) The Environment (Protection) Rules, 1986

  • International Energy Agency (IEA) (2017) Coal Information 2017: Overview. Organisation for Economic Cooperation and Development (OECD), Paris. https://doi.org/10.1787/coal-2017-en

  • Iwasaki Y, Ormerod SJ (2012) Estimating safe concentrations of trace metals from inter-continental field data on river macroinvertebrates. Environ Pollut 166:182–186. https://doi.org/10.1016/j.envpol.2012.03.028

    Article  Google Scholar 

  • Japan Ministry of the Environment (2017) http://www.env.go.jp/water/impure/haisui.html. Accessed 19 Oct 2017

  • Kim D, Yun S, Cho Y, Hong J, Batsaikhan B (2017) Hydrochemical assessment of environmental status of surface and ground water in mine areas in South Korea: emphasis on geochemical behaviors of metals and sulfate in ground water. Geochem Explor 83:33–45. https://doi.org/10.1016/j.gexplo.2017.09.014

    Article  Google Scholar 

  • Kleinmann RLP, Watzlaf GR (1988) Should the effluent limits for manganese be modified? Proceedings of American Society of Mining Reclamation, Pittsburgh, PA pp 305–309. https://doi.org/10.21000/JASMR88020305

    Article  Google Scholar 

  • Lasier PJ, Winger PV, Bogenrieder KJ (2000) Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca. Arch Environ Contam Toxicol 38:298–304. https://doi.org/10.1007/s002449910039

    Article  Google Scholar 

  • Lee S, Kim I, Kim K, Lee B (2015) Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay. SpringerPlus. 4:518. https://doi.org/10.1186/s40064-015-1311-1

    Article  Google Scholar 

  • Matthies R, Aplin AC, Jarvis AP (2010) Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation. Sci Total Environ 408:4877–4885. https://doi.org/10.1016/j.scitotenv.2010.06.009

    Article  Google Scholar 

  • McCullough CD, Lund MA (2011) Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J Environ Manag 92:2419–2426. https://doi.org/10.1016/j.jenvman.2011.04.011

    Article  Google Scholar 

  • McCullough CD, Lund MA, May JM (2008) Field-scale demonstration of the potential for sewage to remediate acidic mine waters. Mine Water Environ 27:31–39. https://doi.org/10.1007/s10230-007-0028-y

    Article  Google Scholar 

  • Mine Reclamation Corporation (2012) MIRECO Sustainability Report 2012

  • Mudd GM (2010) The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resour Policy 35:98–115. https://doi.org/10.1186/s40064-015-1311-1

    Article  Google Scholar 

  • Mutanga SS, Mujuru M (2016) Management and mitigation of acid mine drainage in South Africa: Input for mineral beneficiation in Africa. Africa Institute of South Africa

  • New South Wales Environment Protection Authority (NSW EPA) (2017) Environment Protection Licences. http://www.epa.nsw.gov.au/prpoeoapp/ViewPOEOLicence.aspx?DOCID=32776andSYSUID=1andLICID=726 Accessed 20 Dec 2017

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals, 3rd edn. Academic Press, Burlington

    Google Scholar 

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds), Acid Sulfate Weathering. SSSA Spec. Publ. Soil Science Soc of America, Madison, pp 37–56. https://doi.org/10.2136/sssaspecpub10.c3

    Google Scholar 

  • Oberholster PJ, Botha AM, Hill L, Strydom WF (2017) River catchment responses to anthropogenic acidification in relationship with sewage effluent: an ecotoxicology screen application. Chemosphere 189:407–417. https://doi.org/10.1016/j.chemosphere.2017.09.084

    Article  Google Scholar 

  • Ochieng GM, Seanego ES, Nkwonta OI (2010) Impacts of mining on water resources in South Africa: a review. Sci Res Essays 5(22):3351–3357

    Google Scholar 

  • Pennsylvania Department of Environmental Protection (1998) Title 25 Environmental Protection. Pennsylvania Dept of Environmental Protection. Chapter 87.102

  • People’s Republic of China (2006) Coal industry emission standards GB 20426-2006

  • Polish Ministry of Environment (2014) Poz. 1800

  • Pond GJ, Passmore ME, Borsuk FA, Reynolds L, Rose CJ (2008) Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J N Am Benthol Soc 27(3):717–737. https://doi.org/10.1899/08-015.1

    Article  Google Scholar 

  • Pope J, Newman N, Craw D, Trumm D, Rait R (2010) Factors that influence coal mine drainage chemistry West Coast, South Island, New Zealand. N Z J Geol Geophys 53(2–3):115–128. https://doi.org/10.1080/00288306.2010.498405

    Article  Google Scholar 

  • Real Decreto (1986) Real Decreto of Spain 849/1986

  • Slovak Environmental Agency (2010) State of the Environment Report Slovak Republic 2010

  • Slovak Republic (2010) Government regulation no. 269/2010

  • Smyntek PM, Wagner RC, Krometis L, Carvajal Sanchez S, Wynn-Thompson T, Strosnider WHJ (2017) Passive biological treatment of mine water to reduce conductivity: potential designs, challenges, and research needs. J Environ Qual 46:1–9. https://doi.org/10.2134/jeq2016.06.0216

    Article  Google Scholar 

  • Soucek DJ, Kennedy AJ (2005) Effects of hardness, chloride, and acclimation on the acute toxicity of sulfate to freshwater invertebrates. Environ Toxicol Chem 24(5):1204–1210. https://doi.org/10.1897/04-142.1

    Article  Google Scholar 

  • Tiwary RK (2001) Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut 132(1–2):185–199. https://doi.org/10.1023/A:1012083519667

    Article  Google Scholar 

  • U. S. Environmental Protection Agency (2008) Coal mining detailed study. EPA-821-R-08-012

  • United Nations Development Programme (2019) Human Development Reports. http://hdr.undp.org/en/data. Accessed 31 Oct 2019

  • U. S. Environmental Protection Agency (2011) A field-based aquatic life benchmark for conductivity in Central Appalachian streams. EPA-600-R-10-023F

  • U.S. Environmental Protection Agency (2014) Alpha Natural Resources Inc. Settlement. https://www.epa.gov/enforcement/alpha-natural-resources-inc-settlement. Accessed 31 Oct 2019

  • van der Merwe W, Lea I (2003) Towards sustainable mine water treatment at Grootvlei mine. In: Nel PJL (ed), Mine water environ. Proceedings of the 8th International Mine Water Assoc Congress, Johannesburg, pp 25–36

  • Wei-ci G, Chao W (2011) Comparative study on coal mine safety between China and the U.S. from a safety sociology perspective. Procedia Eng 26:2003–2011. https://doi.org/10.1016/j.proeng.2011.11.2397

    Article  Google Scholar 

  • Weng Z, Mudd GM, Martin T, Boyle CA (2012) Pollutant loads from coal mining in Australia: discerning trends from the national pollutant inventory (NPI). Environ Sci Policy 19–20:78–89. https://doi.org/10.1016/j.envsci.2012.03.003

    Article  Google Scholar 

  • Wolkersdorfer C (2008) Water management at abandoned flooded underground mines—fundamentals, tracer tests, modelling, water treatment. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-77331-3

    Book  Google Scholar 

  • Wright IA (2011) Coal mine ‘dewatering’ of saline wastewater into NSW streams and rivers: a growing headache for water pollution regulators. Proceedings of the 6th Australian Stream Management Conference

  • Wyoming Department of Environmental Quality (2015) Water Quality. Wyoming Administrative Rules

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

Download references

Acknowledgements

This work would have been impossible without the assistance of Peter Bajtos, Paul Behum, Adam Jarvis, Cherie McCullough, Hugh Potter, Naďa Rapantová, Abhay Soni, Peter Smyntek, Wanghua Sui, Tomasz Suponik, Jacek Szczepiński and the innumerable other expert members of the International Mine Water Association (IMWA) that responded to our request for information. Eric Baker, Bartholomew Blair, Stefan Long, Logan Madison, David Madl, Nicholas McKnight, Ashley Rovder, Staci Shoemaker, and Ryan Siwy, students from the Saint Francis University Environmental Engineering program, also provided important literature search support. This is contribution number 1877 for the Belle W. Baruch Institute for Marine and Coastal Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. J. Strosnider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strosnider, W.H.J., Hugo, J., Shepherd, N.L. et al. A Snapshot of Coal Mine Drainage Discharge Limits for Conductivity, Sulfate, and Manganese across the Developed World. Mine Water Environ 39, 165–172 (2020). https://doi.org/10.1007/s10230-020-00669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00669-8

Keywords

Navigation