Skip to main content
Log in

Assessment of Mineralogical, Textural, and Water Chemistry Changes During Long-Distance Tailings-Slurry Transport

Untersuchung der Veränderung von Mineralogie, Struktur and Wasserchemie während des langen Transportweges von Tailingsschlamm

尾砂浆长距离运输过程的矿物、结构和水化学变化

Evaluación de los cambios mineralógicos, de textura y de química del agua durante el transporte de lodos y relaves a larga distancia 

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

An exploratory study demonstrated that subtle changes in solids and process water were caused by long-distance turbulent transport of tailings from the concentrator to the impoundment of a Cu (Mo) porphyry copper deposit. Slurry water chemical analysis was complemented by modelling potential phase precipitation or dissolution and speciation of dissolved metals. It was found that transport did not affect major insoluble mineral phases. However, the degrees of liberation of several phyllosilicates, as determined by automated mineralogy, were reduced close to the impoundment, which points to separation of clay particles from tectosilicate surfaces by the turbulence; this also was observed by SEM examination of micro-aggregate specimens. Reduction of maximum particle sizes, increased N2 monolayer adsorption, and resultant specific surface areas indicate that transport modified the micro-aggregates. Major element water chemistry is controlled by the presence of soluble mineral phases, such as gypsum, and reagents, such as lime, in the flotation process. Changes in the dissolved concentrations of some elements could potentially affect tailings deportment in the impoundment. Increased concentrations of Al may affect the clay settling behaviour, while Mo and As levels will require treatment prior to the discharge of water from the tailings impoundment. This study demonstrated that systematic scrutiny of tailings slurries leaving the concentrator and before entering the impoundment can be potentially useful, though care will have to be exercised to replicate sample handling and analytical conditions, during any long-term monitoring.

Zusammenfassungd

Die vorliegende Forschungsstudie demonstrierte, dass der turbulente Transport von Tailings einer Cu(Mo) porphyrischen Kupferlagerstätte vom Eindicker zum Absetzbecken leichte Änderungen in Feststoffen und Prozesswasser hervorruft. Die chemische Analyse des Schlammwassers wurde durch Modellierung potentieller Phasenausfällung oder -auflösung und Speziation gelöster Metalle ergänzt. Die Ergebnisse zeigen, dass der Transport keine Auswirkungen auf die wesentlichen unlöslichen Mineralphasen hat. Allerdings reduzierte sich der Freisetzungsgrad mehrerer Schichtsilikate, bestimmt durch automatische Mineralogie, in der Nähe des Absetzbeckens, was auf eine Abtrennung von Tonpartikeln von der Oberfläche von Tectosilikaten infolge der Turbulenz hindeutet. Dies wurde auch im Zuge der SEM-Betrachtung von Mikroaggregatproben beobachtet. Eine Verringerung der maximalen Partikelgrößen, erhöhte N2 Einschichtadsorption und daraus folgende spezifische Oberfläche weisen darauf hin, dass der Transport eine Veränderung der Mikroaggregate nach sich zieht. Das wasserchemische Verhalten von Hauptelementen wird durch Vorliegen löslicher Mineralphasen wie z.B. Gips und Reagenzien wie z.B. Kalk im Flotationsprozess kontrolliert. Eine Veränderung der gelösten Konzentrationen einiger Elemente könnte potentiell Auswirkungen auf das Verhalten der Tailings im Absetzbecken haben. Eine erhöhte Al-Konzentration kann das Sedimentationsverhalten von Ton beeinflussen, während Mo und As Gehalte eine Behandlung des Wassers aus dem Tailingsbecken vor der Ableitung erforderlich machen. Die vorliegende Studie zeigt, dass eine systematische Untersuchung von Tailingsschlämmen am Ablauf eines Eindickers und vor dem Zulauf zum Absetzbecken potentiell nützlich sein kann, wobei besondere Vorsicht hinsichtlich der Reproduzierbarkeit von Probenbehandlung und Analysebedingungen im Zuge eines langfristigen Monitorings geboten ist.

抽象

探索性研究曾表明,尾矿从选矿厂到斑岩铜(钼)尾矿库的长距离紊流运输会引起尾矿固体和处理水的细微变化。通过模拟潜在物相的沉淀与溶解和可溶金属形态,分析了尾矿砂浆水的化学特征。结果发现,运输过程并未影响主要不溶矿物相。然而,自动矿物分析显示,几种层状硅酸盐的解离度已经接近尾矿库,指示紊流使粘土颗粒从架状硅酸盐表面分离出来;微团聚体的电镜扫描(SEM)也观察到这一现象。最大粒径的减小、N2单分子层吸附量的增加以及由此产生的比表面积的增加都表明,运输改变了微团聚体。主要元素的水化学性质受所含可溶性矿物(如石膏)和浮选过程反应试剂(如石灰)的控制。一些元素的溶解浓度变化也可能影响尾矿库内尾矿形态。铝浓度增加可能影响粘土沉降行为,废水从尾矿库排出之前需要处理钼和砷浓度。研究表明,在尾矿砂浆离开选矿厂至进入尾矿库之前,对尾矿砂浆进行系统检查是有用的。在长期监测期间,注意不断重复取样和条件分析。

Resumen

Un estudio exploratorio demostró que los cambios sutiles en los sólidos y el agua del proceso fueron causados ​​por el transporte turbulento a larga distancia de los relaves desde el concentrador hasta el depósito de un pórfido de cobre Cu (Mo). El análisis químico del agua de la suspensión se complementó con el modelado de la fase potencial de precipitación o disolución y especiación de metales disueltos. Se descubrió que el transporte no afectaba a las principales fases minerales insolubles. Sin embargo, los grados de liberación de varios filosilicatos, según lo determinado por la mineralogía automatizada, se redujeron cerca del embalse, lo que apunta a la separación de las partículas de arcilla de las superficies de tectosilicato por la turbulencia; esto también fue observado mediante el examen SEM de muestras de microagregados. La reducción de los tamaños máximos de partículas, el aumento de la adsorción de monocapa de N2 y las áreas de superficie específicas resultantes, indican que el transporte modificó los microagregados. La química del agua está controlada por la presencia de fases minerales solubles, como yeso, y reactivos, como cal, en el proceso de flotación. Los cambios en las concentraciones disueltas de algunos elementos podrían afectar el comportamiento de los relaves en el embalse. El aumento de las concentraciones de Al podría afectar el comportamiento de sedimentación de las arcillas, mientras que los niveles de Mo y As requerirán tratamiento antes de la descarga de agua del depósito de relaves. Este estudio demostró que el análisis sistemático de los lodos de relaves que salen del concentrador y antes de ingresar al depósito puede ser potencialmente útil, aunque se deberá tener cuidado para replicar el manejo de la muestra y las condiciones analíticas, durante cualquier monitoreo a largo plazo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguirre J, Wlaczack M (2017) Effect of dissolved copper ions on erosion-corrosion synergy of X65 steel in simulated copper tailings slurry. Tribol Int 114:329–336

    Google Scholar 

  • Al-Abed SR, Jagedeesani G, Purandaré J (2007) Arsenic release from iron rich mineral processing waste; influence of pH and redox potential. Chemosphere 66:775–782

    Google Scholar 

  • Alcalde J (2015) Caracterización física, química y mineralógica de muestras seleccionadas de relaves del tranque Barahona II: Factores que afectan la recuperación de cobre en un escenario de reprocesamiento. MS Project, Univ de Concepción, Concepción (in Spanish)

  • Alderman NJ, Haldenwang R (2007) A review of Newtonian and non-Newtonian flow in rectangular open channels. In: Proceedings of 17th international conference on hydrotransport, Cape Town, pp 87–106

  • Alexandrov VI, Timukhin SA, Makharatkin PN (2017) Energy efficiency of hydraulic transportation at Kachkanarsky MPP. J Min Inst 225:330–337

    Google Scholar 

  • Angle CW, Gharib S (2017) Effects of sand and flocculation on dewaterability of kaolin slurries aimed at treating mature oil sands tailings. Chem Eng Res Des 125:306–318

    Google Scholar 

  • Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Miner Geochem 80:61–164

    Google Scholar 

  • Avendaño MJ (2006) Difracción de rayos-X cuantitativa (método Rietveld) en la caracterización de alteración argílica en el Yacimiento de Cu, Cerro Colorado, I Región, Chile. Undergraduate Thesis, Dept de Ciencias de la Tierra, Univ de Concepción (in Spanish)

  • Blight G (2009) Geotechnical engineering for mine waste storage facilities. CRC Press, Boca Raton

    Google Scholar 

  • Blight G, Bentel G (1983) The behaviour of mine tailings during hydraulic deposition. J S Afr Inst Min Metall 83:73–86

    Google Scholar 

  • Botha L, Soares JP (2015) The influence of tailings composition on flocculation. Can J Chem Eng 93:1514–1523

    Google Scholar 

  • Botin JA (2010) Integrating sustainability down to operational levels of a mining company. DYNA 77:43–49

    Google Scholar 

  • Camus F (2003) Geología de los sistemas de porfíricos en los Andes de Chile. Servicio Nacional de Geología y Minería, Santiago de Chile (in Spanish)

    Google Scholar 

  • Davies EJ, Nepstad R (2017) In situ characterization of complex suspended particulates surrounding an active submarine tailings placement site in a Norwegian fjord. Reg Stud Mar Sci 16:198–207

    Google Scholar 

  • Du J, Morris G, Puslarova RA (2010) Effect of surface structure of kaolinite on aggregation, settling rate and bed density. Langmuir 26(16):13227–13235

    Google Scholar 

  • Dupré A (2019) Análisis de distribución de tamaño de partículas mediante difracción láser vía húmeda, en estándares minerales de filosilicatos y residuos mineros. Undergraduate Thesis, Dept de Ciencias de la Tierra, Univ de Concepción, Concepción (in Spanish)

  • Faitli J, Gombkötö I (2015) Some technical aspects of the rheological properties of high concentration fine suspensions to avoid environmental disasters. J Environ Eng Landsc 23:129–137

    Google Scholar 

  • Farrokhpay S (2012) The importance of rheology in mineral flotation: a review. Miner Eng 36–38:272–278

    Google Scholar 

  • Ferrer-Boix C, Martín-Vide JP, Parker G (2015) Sorting of a sand–gravel mixture in a Gilbert-type delta. Sedimentology 62:1446–1465

    Google Scholar 

  • Goldberg S (1989) Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: a review. Commun Soil Sci Plant Anal 20:1181–1207

    Google Scholar 

  • Grilo CF, da Quaresma SV, Amorim GFL (2018) Changes in the flocculation patterns of cohesive sediment after an iron ore mining dam failure. Mar Geol 400:1–11

    Google Scholar 

  • Gumfekar SP, Soares JBP (2018) A novel hydrophobically-modified polyelectrolyte for enhanced dewatering of clay suspension. Chemosphere 194:422–431

    Google Scholar 

  • Gumfekar SP, Rooney TR, Hutchinson RA, Soares JBP (2017) Dewatering oil sands tailings with degradable polymer flocculants. ACS Appl Mat Interfaces 9:36290–36300

    Google Scholar 

  • Gustafsson JP (2018) Visual MINTEQ Version 3.1. https://vminteq.lw.kth.se/download/. Accessed 01 Oct 2018

  • Hart JR, Zhu Y, Pirard E (2010) Particle size and shape characterization: current technology and practice. In: Christidis JE (ed) European Mineralogical Union (EMU) Notes 9, Advances in the Characterization of Industrial Minerals, pp 77–127

  • Ihle CF, Tamburrino A (2012) Uncertainties in key transport variables in homogeneous slurry flows in pipelines. Miner Eng 32:54–59

    Google Scholar 

  • Jones H, Boger DV (2012) Sustainability and waste management in the resource industries. Ind Eng Chem Res ACS 51:10057–10065

    Google Scholar 

  • Joseph-Soly S, Nosrati A, Addai-Mensah J (2016) Improved dewatering of Ni-laterite are slurries using superabsorbent. Adv Powder Technol 27:2308–2316

    Google Scholar 

  • Kaiser M, Berhe AA (2014) How does sonication affect the mineral and organic constituents of soil aggregates? A review. J Plant Nutr Soil Sci 177:479–495

    Google Scholar 

  • Kargar M, Khorasani N, Karami M, Rafiee G-R, Naseh R (2011) Study of aluminium, copper and molydenum pollution in groundwater source surrounding (Miduk) Shabr-E-Babak copper complex tailings dam. Environ Ecol Eng 5:278–282

    Google Scholar 

  • Klein B, Dunbar WS, Scoble M (2002) Integrating mining and mineral processing for advanced mining systems. CIM ICM Bull 95:63–68

    Google Scholar 

  • Klimchouk AB (2000) Dissolution and conversion of gypsum and anhydrite. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville, pp 160–168

    Google Scholar 

  • Lee CK, Tsay CS (1998) Pore connectivity of alumina and aluminium borate from nitrogen isotherms. J Chem Soc Faraday Trans 94:573–577

    Google Scholar 

  • Leybourne MI, Cameron EM (2008) Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem Geol 247:208–228

    Google Scholar 

  • McClung CR (2016) Molybdenite polytypism and its implications for processing and recovery: a geometallurgical-based case study from Bingham Canyon mine, Utah. Miner Metall Proc 33:149–154

    Google Scholar 

  • Merrie J, Voisin L, Montenegro V, Ihle CF, McFarlane A (2017) Slurry rheology prediction based on hyperspectral characterization models for mineral quantification. Miner Eng 109:126–134

    Google Scholar 

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  • Morgan D, Wilson MJ (eds) (1987) A handbook of determinative methods in clay mineralogy. Blackie, Glasgow

    Google Scholar 

  • Nemec W (1990) Aspects of sediment movement on steep delta slopes. In: Colella A, Prior DB (eds) Coarse-grained Deltas. Wiley On-Line, Hoboken. https://doi.org/10.1002/9781444303858.ch1

  • Ndlovu B, Becker M, Forbes E, Deylon D, Franzidis J-R (2011) The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner Eng 24:1314–1322

    Google Scholar 

  • Ofori P, Nguyen AV, Firth B, McNally C (2011) Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings. Chem Eng J 172:914–923

    Google Scholar 

  • Pullum L, Boger DV, Sofra F (2018) Hydraulic mineral waste storage and transport. Annu Rev Fluid Mech 58:157–185

    Google Scholar 

  • Reyes C, Ihle CF (2018) Numerical simulation of cation exchange in fine-coarse seawater slurry pipeline flow. Miner Eng 117:14–23

    Google Scholar 

  • Rubinos DA, Iglesias L, Diaz-Fierros F, Barral MT (2011) Interacting effect of pH, phosphate and time on the release of Arsenic from polluted river sediments (Anllns, River, Spain). Aquat Geochem 17:281–306

    Google Scholar 

  • Santamarina JC, Klein KA, Palomino A, Guimaraes MS (2002) Micro-scale aspects of chemo-mechanical coupling: interparticle forces and fabric. In: Di Maio C, Hueckel T, Loret B (eds) Chemomechanical coupling in clays: from nano-scale to engineering applications. Swets & Zeitlinger, Lisse

  • Shabalala NZP, Harris M, Leal Filho LS, Deglon DA (2011) Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell. Miner Eng 24:1448–14453

    Google Scholar 

  • Shi FN, Zheng XF (2003) The rheology of flotation froths. Int J Miner Process 69:115–128

    Google Scholar 

  • Simms PH, Yanful EK, St-Armand L, Aube B (2000) A laboratory evaluation of metal release and transport in flooded pre-oxidized mine tailings. Appl Geochem 15:1245–1263

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2017) Molybdenum in natural waters. A review of occurrence, distributions and control. Appl Geochem 84:387–432

    Google Scholar 

  • Smuda J, Dold B, Spangenberg JE, Pfeifer HR (2008) Geochemistry and stable isotope composition of fresh alkaline porphyry copper tailings: implications on sources and mobility of elements during transport and early stages of deposition. Chem Geol 256:62–76

    Google Scholar 

  • Spagnoli G, Rubinos D, Stanjek H, Fernández-Steeger T, Feinendegen M, Azzam R (2012) Undrained shear strength of clays as modified by pH variations. B Eng Geol Environ 71:135–148

    Google Scholar 

  • Szynkarczuk J, Kan J, Hassan TAT, Donini JC (1994) Electrochemical coagulation of clay suspensions. Clay Clay Miner 42:667–673

    Google Scholar 

  • Talling PJ, Masson DG, Summer EJ, Malgesini G (2012) Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59:1937–2003

    Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    Google Scholar 

  • Thompson DK, Motta FL, Soares JBP (2017) Investigation on the flocculation of oil sands mature fine tailings with alkysilanes. Miner Eng 111:90–99

    Google Scholar 

  • Trahar W, Warren L (1976) The floatability of very fine particles—a review. Int J Miner Process 3:103–131

    Google Scholar 

  • van Olphen H (1963) Clay colloid chemistry. Interscience Publ, New York, pp 16–29

    Google Scholar 

  • Viparceli E, Solar L, Hill KM (2015) Downstream lightening and upward heaving: experiments with sediments differing in density. Sedimentology 62:1384–1407

    Google Scholar 

  • Wang CC, Juang LC, Hsu TC, Lee CK, Lee JF, Huang FC (2004) Adsorption of basic dyes onto montmorillonite. J Colloid Interface Sci 273:80–86

    Google Scholar 

  • World Health Organization (2017) Guidelines for drinking-water quality. 4th edit, incorporating the first addendum. World Health Org (WHO), Geneva (Licence: CC BY-NC-SA 3.0 IGO)

  • Xie Y, Jiang J, Tufa Y, Yick S (2015) Wear resistance of materials used for slurry transport. Wear 332–333:1104–1110

    Google Scholar 

  • Yao Y, Liu D, Tang D, Tang S, Huang W (2008) Fractal characterization of adsorption-pores of coals from north China: an investigation on CH4 adsorption capacity of coals. Int J Coal Geol 73:27–42

    Google Scholar 

  • Zbick MS, Smart RSC, Morris GE (2008) Kaolinite flocculation structure. J Colloid Interface Sci 328:73–80

    Google Scholar 

  • Zhang D, Thundat T, Narain R (2017) Flocculation and dewatering of mature fines tailings using temperature responsive cationic polymers. Langmuir 33:5900–5909

    Google Scholar 

  • Zhu H, Zhu J, López-Valdivieso A, Min F, Song S, Huang D, Shao S (2018) Effect of dodecylamine-frother blend on bubble rising characteristics. Powder Technol 338:586–590

    Google Scholar 

Download references

Acknowledgements

The financial support by CORFO (Chilean Economic Development Agency), grant 13CEI-21844-SMI-UdeC is acknowledged. Prof. Gina Pecchi (Facultad de Ciencias Químicas, Universidad de Concepción) is thanked for conducting the BET determinations. The comments and suggestions of two anonymous reviewers helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Kelm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 94 kb)

Supplementary material 2 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcalde, J., Edraki, M., Jerez, O. et al. Assessment of Mineralogical, Textural, and Water Chemistry Changes During Long-Distance Tailings-Slurry Transport. Mine Water Environ 39, 135–149 (2020). https://doi.org/10.1007/s10230-020-00658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00658-x

Keywords

Navigation