Skip to main content
Log in

Possibilities for Acid Mine Drainage Co-treatment with Other Waste Streams: A Review

Möglichkeiten zur gemeinsamen Behandlung saurer Grubenwässer mit anderen Abfallströmen: Ein Ausblick

Posibilidades para el co-tratamiento del drenaje ácido de minas con otros desechos líquidos: un review

酸性矿井废水与其它废物协同处理的前景: 综述

  • Review
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The co-treatment of AMD with other common liquid wastes is a promising synergistic approach, fusing characteristics of active and passive AMD treatment for a sustainable remediation strategy. This paper discusses existing literature on AMD co-treatment approaches, focusing on factors that influence the feasibility of co-treatment, such as mixing proportions, microbiological elements, reactor design, and mixed-water chemistry. Finally, this paper highlights future possibilities, drawing attention to prospects that require exploration.

Zusammenfassung

Die gemeinsame Behandlung saurer Grubenwässer mit anderen gängigen Flüssigabfällen ist als nachhaltige Sanierungsstrategie ein vielversprechender synergetischer Ansatz zur passiven und aktiven Behandlung saurer Grubenwässer. Diese Arbeit erörtert vorhandene Literatur mit Mitbehandlungsansätzen für saure Grubenwässer mit dem Schwerpunkt auf Faktoren wie Mischungsverhältnisse, mikrobiologische Elemente, Reaktorkonstruktion und Mischwasserchemie, die die Durchführbarkeit der gemeinsamen Behandlung beeinflussen. Abschließend zeigt die Arbeit zukünftige Möglichkeiten unter Hinweis auf Chancen und Risiken die weiteren Untersuchungen erfordern auf.

Resumen

El tratamiento conjunto de la AMD con otros desechos líquidos comunes es un enfoque sinérgico prometedor, que fusiona las características del tratamiento de AMD activo y pasivo para una estrategia de remediación sostenible. Este artículo analiza la literatura existente sobre los enfoques de tratamiento conjunto de AMD, enfocándose en factores que influyen en la viabilidad del tratamiento conjunto, como las proporciones de mezcla, los elementos microbiológicos, el diseño del reactor y la química de agua mixta. Finalmente, este documento destaca las posibilidades futuras, llamando la atención sobre las perspectivas que requieren exploración.

抽象

酸性矿井废水(AMD)与其它常见液体废物的协同处理方法具有发展前景,它有望融合AMD主动与被动处理的特点而成为可持续性修复策略。讨论了现有关于AMD协同处理方法的文献,重点关注了影响协同处理可行性的因素,如混合比例、微生物种类、反应器设计和混合水化学特征。最后,突出了协同处理技术的发展前景与研究方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abril G, Frankignoulle M (2001) Nitrogen–alkalinity interactions in the highly polluted Scheldt basin (Belgium). Water Res 35:844–850

    Google Scholar 

  • Akcil A, Koldas S (2006) Acid Mine Drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

    Google Scholar 

  • Al-Qodah Z (2006) Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 196:164–176

    Google Scholar 

  • Azapagic A (2004) Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod 12:639–662

    Google Scholar 

  • Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E (2011) Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. J Hazard Mater 189:670–676

    Google Scholar 

  • Buitrón G, Carvajal C (2010) Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101:9071–9077

    Google Scholar 

  • Caravelli AH, Contreras EM, Zaritzky NE (2010) Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. J Hazard Mater 177:199–208

    Google Scholar 

  • Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277

    Google Scholar 

  • Chang W-C, Hsu C-H, Chiang S-M, Su M-C (2007) Equilibrium and kinetics of metal biosorption by sludge from a biological nutrient removal system. Environ Technol 28:453–462

    Google Scholar 

  • Chipasa KB (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manag 23:135–143

    Google Scholar 

  • Choi E, Rim JM (1991) Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci Technol 23:1259–1264

    Google Scholar 

  • Crane RS, Barton P, Cartmell E, Coulon F, Hillis P, Judd SJ, Santos A, Stephenson T, Lester JN (2010) Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: I Evaluation of biomass adsorption capacity. Environ Technol 31:705–723

    Google Scholar 

  • Demin OA, Dudeney AWL (2003) Nitrification in constructed wetlands treating ochreous mine water. Mine Water Environ 22:15–21

    Google Scholar 

  • Deng D, Lin L-S (2013) Two-stage combined treatment of acid mine drainage and municipal wastewater. Water Sci Technol 67:1000–1007

    Google Scholar 

  • Deng D, Weidhaas JL, Lin L-S (2016) Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. J Hazard Mater 305:200–208

    Google Scholar 

  • García-Muñoz P, Pliego G, Zazo JA, Munoz M, de Pedro ZM, Bahamonde A, Casas JA (2017) Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. J Environ Chem Eng 5:4337–4343

    Google Scholar 

  • Hamjinda NS, Chiemchaisri W, Watanabe T, Honda R, Chiemchaisri C (2018) Toxicological assessment of hospital wastewater in different treatment processes. Environ Sci Pollut Res 25:7271–7279

    Google Scholar 

  • He C, Zhang T, Vidic RD (2013) Use of abandoned mine drainage for the development of unconventional gas resources. Disruptive Sci Technol 1:169–176

    Google Scholar 

  • He C, Li M, Liu W, Barbot E, Vidic RD (2014a) Kinetics and equilibrium of barium and strontium sulfate formation in Marcellus Shale flowback water. J Environ Eng 140:B4014001

    Google Scholar 

  • He C, Wang X, Liu W, Barbot E, Vidic RD (2014b) Microfiltration in recycling of Marcellus Shale flowback water: solids removal and potential fouling of polymeric microfiltration membranes. J Memb Sci 462:88–95

    Google Scholar 

  • He C, Zhang T, Zheng X, Li Y, Vidic RD (2014c) Management of Marcellus Shale produced water in Pennsylvania: a review of current strategies and perspectives. Energy Technol 2:968–976

    Google Scholar 

  • He C, Zhang T, Vidic RD (2016) Co-treatment of abandoned mine drainage and Marcellus shale flowback water for use in hydraulic fracturing. Water Res 104:425–431

    Google Scholar 

  • Hedin RS, Nairn RW (1993) Contaminant removal capabilities of wetlands constructed to treat coal mine drainage. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. Lewis Publ, Boca Raton, pp 187–195

    Google Scholar 

  • Hickenbottom KL, Hancock NT, Hutchings NR, Appleton EW, Beaudry EG, Xu P, Cath TY (2013) Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination 312:60–66

    Google Scholar 

  • Hughes TA, Gray NF (2012) Acute and chronic toxicity of acid mine drainage to the activated sludge process. Mine Water Environ 31:40–52

    Google Scholar 

  • Hughes TA, Gray NF (2013a) Removal of metals and acidity from acid mine drainage using municipal wastewater and activated sludge. Mine Water Environ 32:170–184

    Google Scholar 

  • Hughes TA, Gray NF (2013b) Co-treatment of acid mine drainage with municipal wastewater: performance evaluation. Environ Sci Pollut Res 20:7863–7877

    Google Scholar 

  • Janssen AJH, Ruitenberg R, Buisman CJN (2001) Industrial applications of new sulphur biotechnology. Water Sci Technol 44:85–90

    Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Google Scholar 

  • Johnson KL, Younger PL (2006) The co-treatment of sewage and mine waters in aerobic wetlands. Eng Geol 85:53–61

    Google Scholar 

  • Joseph JM, Shay DE (1952) Viability of Escherichia coli in acid mine waters. Am J Public Health N 42:795–800

    Google Scholar 

  • Kaksonen AH, Franzmann PD, Puhakka JA (2004) Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343

    Google Scholar 

  • Kefeni KK, Msagati TM, Mamba BB (2015) Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage. Chem Eng J 276:222–231

    Google Scholar 

  • Kerr RA (2010) Natural gas from shale bursts onto the scene. Science 328:1624–1626. https://doi.org/10.1126/science.328.5986.1624

    Article  Google Scholar 

  • Kim M-S, Cha J, Kim D-H (2013) Fermentative biohydrogen production from solid wastes. In: Biohydrogen, Elsevier, pp 259–283

    Google Scholar 

  • Klein R, Schlömann M, Zeng Y, Wacker B, Glombitza F, Janneck E, Muhling M (2013) Impact of the hydraulic retention time on the performance of a sulfidogenic bioreactor. Adv Mat Res 825:392–395

    Google Scholar 

  • Kondash AJ, Warner NR, Lahav O, Vengosh A (2013) Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Environ Sci Technol 48:1334–1342

    Google Scholar 

  • Kumar RN, McCullough CD, Lund MA (2011a) How does storage affect the quality and quantity of organic carbon in sewage for use in the bioremediation of acidic mine waters? Ecol Eng 37:1205–1213

    Google Scholar 

  • Kumar RN, McCullough CD, Lund MA, Newport M (2011b) Sourcing organic materials for pit lake bioremediation in remote mining regions. Mine Water Environ 30:296–301

    Google Scholar 

  • Lee C, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22

    Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

    Google Scholar 

  • Liu Q, Zhou Y, Chen L, Zheng X (2010) Application of MBR for hospital wastewater treatment in China. Desalination 250:605–608

    Google Scholar 

  • Lovley DR, Phillips EJP (1986a) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757

    Google Scholar 

  • Lovley DR, Phillips EJP (1986b) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    Google Scholar 

  • Lu X, Zhen G, Ni J, Hojo T, Kubota K, Li YY (2016) Effect of influent COD/SO42− ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Bioresour Technol 214:175–183

    Google Scholar 

  • McCullough CD (2008) Approaches to remediation of acid mine drainage water in pit lakes. Int J Min Reclam Env 22:105–119

    Google Scholar 

  • McCullough CD, Lund MA (2011) Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J Environ Manage 92:2419–2426

    Google Scholar 

  • McCullough CD, Lund MA, May JM (2006) Microcosm testing of municipal sewage and green waste for full-scale remediation of an acid coal pit lake, in semi-arid tropical Australia. In: Barnhisel RI (ed), Proc, 7th International Conf on Acid Rock Drainage, St. Louis, pp 1177–1197

  • McCullough CD, Lund MA, May JM (2008a) Field-scale demonstration of the potential for sewage to remediate acidic mine waters. Mine Water Environ 27:31–39

    Google Scholar 

  • McCullough CD, Lund MA, May JM (2008b) Treating acidity in coal pit lakes using sewage and green waste: microcosm and field scale trials at the Collinsville Coal Project (Queensland), Citeseer

  • Menezes J, Silva RA, Arce IS, Schneider IAH (2009) Production of a poly-ferric sulphate chemical coagulant by selective precipitation of iron from acidic coal mine drainage. Mine Water Environ 28:311

    Google Scholar 

  • Meng F, Shi B, Yang F, Zhang H (2007) Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess Biosyst Eng 30:359–367

    Google Scholar 

  • Mesdaghinia AR, Naddafi K, Nabizadeh R, Saeedi R, Zamanzadeh M (2009) Wastewater characteristics and appropriate method for wastewater management in the hospitals. Iran J Public Health 38:34–40

    Google Scholar 

  • Metcalf E, Eddy M (2014) Wastewater engineering: treatment and resource recovery. Mic Graw-Hill, USA

    Google Scholar 

  • Mulopo J (2016) Pilot scale assessment of the continuous biological sulphate removal from coal acid mine effluent using grass cutting as carbon and energy sources. J Water Process Eng 11:104–109

    Google Scholar 

  • Munoz M, Garcia-Muñoz P, Pliego G, de Pedro ZM, Zazo JA, Casas JA, Rodriguez JJ (2016) Application of intensified Fenton oxidation to the treatment of hospital wastewater: kinetics, ecotoxicity and disinfection. J Environ Chem Eng 4:4107–4112

    Google Scholar 

  • Neculita C-M, Zagury GJ, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J Environ Qual 36:1–16

    Google Scholar 

  • Oktem YA, Ince O, Sallis P, Donnelly T, Ince BK (2008) Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresour Technol 99:1089–1096

    Google Scholar 

  • Paikaray S (2015) Arsenic geochemistry of acid mine drainage. Mine Water Environ 34:181–196

    Google Scholar 

  • Pambrun V, Marquot A, Racault Y (2008) Characterization of the toxic effects of cadmium and 3.5-dichlorophenol on nitrifying activity and mortality in biologically activated sludge systems—effect of low temperature. Environ Sci Pollut Res 15:592–599

    Google Scholar 

  • Pearson FH, Nesbitt JB (1974) Acid mine drainage as a chemical coagulant for treatment of municipal wastewater. Proc, 5th Symp Coal Mine Drainage Research, Lousville, pp 181–191

  • Peer RAM, LaBar JA, Winfrey BK, Nair RW, Llanos Lopez FS, Strosnider WHJ (2015) Removal of less commonly addressed metals via passive cotreatment. J Environ Qual 44:704–710

    Google Scholar 

  • Rao SR, Gehr R, Riendeau M, Lu D, Finch JA (1992) Acid mine drainage as a coagulant. Miner Eng 5:1011–1020

    Google Scholar 

  • Rockhold ML, Yarwood RR, Niemet MR, Bottomley PJ, Selker JS (2002) Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv Water Resour 25:477–495

    Google Scholar 

  • Roetman ET (1932) The sterilization of sewage by acid mine water. MS Thesis, West Virginia Univ

  • Rose PD, Boshoff GA, van Hille RP, Wallace LCM, Dunn KM, Duncan JR (1998) An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation 9:247–257

    Google Scholar 

  • Sandström Å, Mattsson E (2001) Bacterial ferrous iron oxidation of acid mine drainage as pre-treatment for subsequent metal recovery. Int J Miner Process 62:309–320

    Google Scholar 

  • Santos A, Judd S (2010) The fate of metals in wastewater treated by the activated sludge process and membrane bioreactors: a brief review. J Environ Monit 12:110–118

    Google Scholar 

  • Santos S, Machado R, Correia MJN, Carvalho JR (2004) Treatment of acid mining waters. Miner Eng 17:225–232

    Google Scholar 

  • Sivakumar D (2014) Role of low cost agro-based adsorbent to treat hospital wastewater. Pollut Res 2014g 33:573–576

    Google Scholar 

  • Smyntek PM, Chastel J, Peer RAM, Anthony E, McCloskey J, Bach E, Wagner RC, Bandstra JZ, Strosnider WHJ (2018) Assessment of sulphate and iron reduction rates during reactor start-up for passive anaerobic co-treatment of acid mine drainage and sewage. Geochem Explor Env Anal 18:76–84

    Google Scholar 

  • Strosnider WHJ, Nairn RW (2010) Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple mutual incubations and limestone. J Geochem Explor 105:34–42

    Google Scholar 

  • Strosnider WHJ, Winfrey BK, Nairn RW (2011a) Novel passive co-treatment of acid mine drainage and municipal wastewater. J Environ Qual 40:206–213. https://doi.org/10.2134/jeq2010.0176

    Article  Google Scholar 

  • Strosnider WHJ, Winfrey BK, Nairn RW (2011b) Biochemical oxygen demand and nutrient processing in a novel multi-stage raw municipal wastewater and acid mine drainage passive co-treatment system. Water Res 45:1079–1086. https://doi.org/10.1016/j.watres.2010.10.026

    Article  Google Scholar 

  • Strosnider WHJ, Winfrey BK, Nairn RW (2011c) Alkalinity generation in a novel multi-stage high-strength acid mine drainage and municipal wastewater passive co-treatment system. Mine Water Environ 30:47–53

    Google Scholar 

  • Strosnider WHJ, Nairn RW, Peer RAM, Winfrey BK (2013a) Passive co-treatment of Zn-rich acid mine drainage and raw municipal wastewater. J Geochem Explor 125:110–116. https://doi.org/10.1016/j.gexplo.2012.11.015

    Article  Google Scholar 

  • Strosnider WHJ, Winfrey BK, Peer RAM, Nairn RW (2013b) Passive co-treatment of acid mine drainage and sewage: anaerobic incubation reveals a regeneration technique and further treatment possibilities. Ecol Eng 61:268–273. https://doi.org/10.1016/j.ecoleng.2013.09.037

    Article  Google Scholar 

  • Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418

    Google Scholar 

  • Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48

    Google Scholar 

  • Van Bodegom PM, Scholten JCM, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49:261–268

    Google Scholar 

  • Van Hille RP, Boshoff GA, Rose PD, Duncan JR (1999) A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resour Conserv Recycl 27:157–167

    Google Scholar 

  • Varela AR, André S, Nunes OC, Manaia CM (2014) Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res 54:327–336

    Google Scholar 

  • Wei X, Viadero RC Jr, Bhojappa S (2008) Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Res 42:3275–3284

    Google Scholar 

  • Winfrey BK, Strosnider WHJ, Nairn RW, Strevett KA (2010) Highly effective reduction of fecal indicator bacteria counts in an ecologically engineered municipal wastewater and acid mine drainage passive co-treatment system. Ecol Eng 36:1620–1626. https://doi.org/10.1016/j.ecoleng.2010.06.025

    Article  Google Scholar 

  • Younger PL, Henderson R (2014) Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system. Water Res 55:74–82

    Google Scholar 

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Springer Science & Business Media, Berlin

    Google Scholar 

  • Zhang M (2011) Adsorption study of Pb(II), Cu (II) and Zn (II) from simulated acid mine drainage using dairy manure compost. Chem Eng J 172:361–368

    Google Scholar 

  • Zhang T (2015) Origin and fate of radium in flowback and produced water from marcellus shale gas exploration. Univ of Pittsburgh, USA, PhD diss

    Google Scholar 

  • Zhang L, Keller J, Yuan Z (2009) Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Res 43:4123–4132

    Google Scholar 

  • Zhang T, Gregory K, Hammack RW, Vidic RD (2014) Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction. Environ Sci Technol 48:4596–4603

    Google Scholar 

  • Zheng X (2013) Optimization of treatment options to enable the use of abandoned mine drainage (AMD) for hydraulic fracturing in marcellus shale. MS Thesis, Univ of Pittsburgh, Pittsburgh

  • Zipper CE, Skousen JG (2010) Influent water quality affects performance of passive treatment systems for acid mine drainage. Mine Water Environ 29:135–143

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank the support from the National Research Foundation, grant reference no: TTK180412319899.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thobeka Pearl Makhathini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhathini, T.P., Mulopo, J. & Bakare, B.F. Possibilities for Acid Mine Drainage Co-treatment with Other Waste Streams: A Review. Mine Water Environ 39, 13–26 (2020). https://doi.org/10.1007/s10230-020-00659-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00659-w

Keywords

Navigation