Skip to main content

Advertisement

Log in

Spatial correlates of floristic and structural variation in a Neotropical wetland forest

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Despite the ecological importance of wetland forests, their classification is still unsatisfactory, partly due to insufficient knowledge about the environmental drivers of their spatial heterogeneity. We examined the spatial variation of six community attributes in a tropical wetland forest and analyzed the underlying causes by using linear distance measures and geomorphological zonation as proxies of environmental heterogeneity. The study was conducted in a wetland forest located on a coastal plain of southern Mexico. Vegetation was sampled in two distinct landforms: coastal lagoon and river channel. For each plot we determined two other proxies of environmental variation, namely distance to the sea, and distance to closest water body. We assessed the effects of these environmental factors on wetland forest attributes through linear modelling. Except for species richness, all other attributes were heterogeneous across space, with aboveground biomass showing the largest variation. Overall, forest structural attributes in plots located along the highly dynamic main river channel were higher than those recorded around a relatively stable coastal lagoon, suggesting better conditions for wetland forest development in the former area. Models consistently included geomorphological zone, as well as distance proxies in most of them, with variable effects on community attributes. The spatial variation of this wetland forest was associated with different combinations of environmental proxies, with geomorphology being a key driver of this variability. A thorough understanding of the factors driving the spatial variation of wetland forests will lead to a more sensible ecological classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agraz-Hernández MC (1999) Reforestación experimental de manglares en ecosistemas lagunares estuarinos de la costa noroccidental de México. Dissertation, Universidad Autónoma de Nuevo León

  • Barba-Macías E, Mesa-Jurado MA, Espinoza-Tenorio A, Ortega-Argueta A (2018) Biodiversity conservation in the Pantanos de Centla biosphere reserve: ecological and socioeconomic threats. In: Ortega-Rubio A (ed) Mexican natural resources management and biodiversity conservation. Springer, Cham, pp 455–477

    Chapter  Google Scholar 

  • Barrantes-Leiva RM, Cerdas-Salas A (2015) Distribución espacial de las especies de mangle y su asociación con los tipos de sedimentos del sustrato, en el sector estuarino del Humedal Nacional Térraba-Sierpe, Costa Rica. Rev Biol Trop 63:47–60

    Google Scholar 

  • Bartoń K (2009) MuMIn: Multi-Model Inference. Rpackage version 0.12.2/r18. https://R-Forge.R-project.org/projects/mumin/. Accessed 20 June 2019

  • Beard JS (1955) The classification of tropical American vegetation-types. Ecology 36:89–100. https://doi.org/10.2307/1931434

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Charcape-Ravelo M, Moutarde F (2005) Diversidad florística y conservación del Santuario Regional de Piura Manglares San Pedro de Vice-Sechura. Rev Peru Biol 12:327–334. https://doi.org/10.15381/rpb.v12i2.2406

    Article  Google Scholar 

  • Charlton R (2007) Fundamentals of fluvial geomorphology. Routledge, London

    Book  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2015) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629

    Article  Google Scholar 

  • CICESE (2019) CLICOM daily climatic data from SMN through CICECE’s web site. https://clicom-mex.cicese.mx/mapa.html. Accessed 15 May 2019

  • Clark RL, Guppy JC (1988) A transition from mangrove forest to freshwater wetland in the monsoon tropics of Australia. J Biogeogr 15:665–684. https://doi.org/10.2307/2845444

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. US Fish and Wildlife Service, US Department of Interior, Washington DC

    Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. CRC Press, Boca Raton

    Google Scholar 

  • Dugan PJ (1992) Conservación de humedales: un análisis de temas de actualidad y acciones necesarias. UICN, Gland

    Google Scholar 

  • Dugan PJ (1993) Wetlands in danger: a world conservation atlas. Oxford University Press, New York

    Google Scholar 

  • Duke NC, Allen JA (2005) Rhizophora mangle, R. samoensis, R. racemosa, R. × harrisonii (Atlantic-East Pacific red mangroves), Version 1. In: Elevitch CR (ed) Species profiles for Pacific island agroforestry, permanent agriculture resources, Hōlualoa, pp 1–18

  • Fatoyinbo TE, Armstrong AH (2010) Remote characterization of biomass measurements: case study of mangrove forest. In: Momba M, Bux F (eds) Biomass. InTech Open, Rijeka, pp 65–78

    Google Scholar 

  • Flores-Verdugo F, Agraz-Hernández CM, Martínez-Cordero FJ (1995) Programa de reforestación de manglares por el desarrollo acuícola de Aquanova-Boca Cegada (Nayarit): evaluación ecológica integral y medidas de mitigación. Universidad Autónoma de Nuevo León, Mazatlán

    Google Scholar 

  • Flores-Verdugo F, Moreno-Casasola P, Agraz-Hernández CM, López-Rosas H, Benítez-Pardo D, Travieso-Bello AC (2007) La topografía y el hidroperiodo: dos factores que condicionan la restauración de los humedales costeros. Bol Soc Bot Méx 80:33–47. https://doi.org/10.17129/botsci.1755

    Article  Google Scholar 

  • Gómez-Aparicio L, Ávila JM, Cayuela L (2013) Métodos de máxima verosimilitud en ecología y su aplicación en modelos de vecindad. Ecosistemas 22:12–20. https://doi.org/10.7818/ECOS.2013.22-3.03

    Article  Google Scholar 

  • Gopal B, Sah M (1995) Inventory and classification of wetlands in India. Vegetatio 118:39–48. https://doi.org/10.1007/978-94-011-0427-2_5

    Article  Google Scholar 

  • Green AJ, Alcorlo P, Peeters ETHM, Morris EP, Espinar JL, Bravo-Utrera MA, Bustamante J, Díaz-Delgado R, Koelmans AA, Mateo R, Mooij WM, Rodríguez-Rodríguez M, van Nes EH, Scheffer M (2017) Creating a safe operating space for wetlands in a changing climate. Front Ecol Environ 15:99–107. https://doi.org/10.1002/fee.1459

    Article  Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hutchinson J, Manica A, Swetnam R, Balmford A, Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conserv Lett 7:233–240. https://doi.org/10.1111/conl.12060

    Article  Google Scholar 

  • INEGI (National Institute for Statistics and Geography) (2013) Conjunto de datos vectoriales de uso de suelo y vegetación escala 1:250,000, serie V (capa unión), 2nd edn. Instituto Nacional de Estadística y Geografía, Aguascalientes

    Google Scholar 

  • Infante-Mata D, Moreno-Casasola P, Madero-Vega C, Castillo-Campos G, Warner BG (2011) Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the Coastal Plain of the Gulf of Mexico. For Ecol Manage 262:1514–1531. https://doi.org/10.1016/j.foreco.2011.06.053

    Article  Google Scholar 

  • Infante-Mata D, Moreno-Casasola P, Madero-Vega C (2012) Litterfall of tropical forested wetlands of Veracruz in the coastal floodplains of the Gulf of Mexico. Aquat Bot 98:1–11. https://doi.org/10.1016/j.aquabot.2011.11.006

    Article  Google Scholar 

  • Infante-Mata D, Moreno-Casasola P, Madero-Vega C (2014) Pachira aquatica, an indicator of mangrove limit? Rev Mex Biodivers 85:143–160. https://doi.org/10.7550/rmb.32656

    Article  Google Scholar 

  • Islam SN (2010) Threatened wetlands and ecologically sensitive ecosystems management in Bangladesh. Front Earth Sci Chin 4:438–448. https://doi.org/10.1007/s11707-010-0127-0

    Article  Google Scholar 

  • Islam SN, Gnauck A, Voigt HJ, Eslamian S (2014) Hydrological changes in mangrove ecosystems. In: Eslamian S (ed) Handbook of engineering hydrology. CRC Press, Boca Raton

    Google Scholar 

  • Jesús-García MC, Hernández-Trejo H, Campos-Hervert M, Anacleto-Rosas AD (2019) Patrón de diversidad en comunidades hidrófitas emergentes en la Reserva de la Biosfera Pantanos de Centla. In: La biodiversidad en Tabasco. Estudio de estado, Vol. II. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City.

  • Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University Press, New York

    Book  Google Scholar 

  • Kira T (1978) Community architecture and organic matter dynamics in tropical lowland rain forest of Southeast Asia with special reference to Pasoh Forest, West Malaysia. In: Tomlinson PB, Zimmerman MH (eds) Topical trees as living systems. Cambridge University Press, London, pp 561–590

    Google Scholar 

  • Koponen P, Nygren P, Sabatier D, Rousteau A, Saur E (2004) Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana. Plant Ecol 173:17–32. https://doi.org/10.1023/B:VEGE.0000026328.98628.b8

    Article  Google Scholar 

  • Lankford RR (1977) Coastal lagoons of Mexico: their origin and classification. In: Wiley M (ed) Estuarine processes, volume II: circulation, sediments, and transfer of material in the estuary. Academic Press, New York, pp 182–215

    Chapter  Google Scholar 

  • López-Portillo J, Ezcurra E (1989) Response of three mangroves to salinity in two geoforms. Funct Ecol 3:355–361. https://doi.org/10.2307/2389376

    Article  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Ann Rev Ecol Syst 5:39–64. https://doi.org/10.1146/annurev.es.05.110174.000351

    Article  Google Scholar 

  • Maitland PS, Morgan NC (1997) Conservation management of freshwater habitats: lakes, rivers and wetlands. Chapman and Hall, New York

    Book  Google Scholar 

  • Maltby E (1991) Wetland management goals: wise use and conservation. Landsc Urban Plan 20:1–3

    Article  Google Scholar 

  • Maltby E (2009) The changing wetland paradigm. In: Maltby E, Barker T (eds) The wetlands handbook. Wiley-Blackwell, Chichester, pp 2–42

    Chapter  Google Scholar 

  • Mazerolle MJ (2019) Model selection and multimodel inference based on (Q)AIC(c), ver. 2.2-1. https://cran.r-project.org. Accessed 20 June 2019

  • McKee KL (1993) Soil physicochemical patterns and mangrove species distribution: reciprocal effects. J Ecol 81:477–487. https://doi.org/10.2307/2261526

    Article  Google Scholar 

  • Méndez Linares AP, López-Portillo J, Hernández-Santana JR, Ortiz Pérez MA, Oropeza Orozco O (2007) The mangrove communities in the Arroyo Seco deltaic fan, Jalisco, Mexico, and their relation with the geomorphic and physical–geographic zonation. CATENA 70:127–142. https://doi.org/10.1016/j.catena.2006.05.010

    Article  Google Scholar 

  • Migeot J, Imbert D (2011) Structural and floristic patterns in tropical swamp forests: a case study from the Pterocarpus officinalis (Jacq.) forest in Guadeloupe, French West Indies. Aquat Bot 94:1–8. https://doi.org/10.1016/j.aquabot.2010.09.003

    Article  Google Scholar 

  • Mitsch WJ, Cronk JK (1992) Creation and restoration of wetlands: some design consideration for ecological engineering. In: Lal R, Stewart BA (eds) Soil restoration. Advances in soil science, vol 17. Springer, New York, pp 217–259 https://doi.org/10.1007/978-1-4612-2820-2_8

    Chapter  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 32:25–33. https://doi.org/10.1016/S0921-8009(00)00165-8

    Article  Google Scholar 

  • Monroy-Torres M, Flores-Verdugo F, Flores-de-Santiago F (2014) Growth of three subtropical mangrove species in response to varying hydroperiod in an experimental tank. Cien Mar 40:263–275

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23. https://doi.org/10.2307/2332142

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Casasola P, López RH, Infante MD, Peralta LA, Travieso-Bello AC, Warner BG (2009) Environmental and anthropogenic factors associated with coastal wetland differentiation in La Mancha, Veracruz, Mexico. Plant Ecol 200:37–52. https://doi.org/10.1007/s11258-008-9400-7

    Article  Google Scholar 

  • Murdoch D (2001) RGL: an R interface to OpenGL. In: Hornik K and Leisch E (eds) Proceedings of the 2nd international workshop on distributed statistical computing. Technische Universität Wien, Vienna

  • Nagano M, Kira T (1978) Primary production-aboveground biomass biological production in a warm-temperate evergreen oak forest of Japan. In: Kira T, Hosokawa T (eds) JIBP synthesis 18. University of Tokyo Press, Tokyo, pp 69–82

    Google Scholar 

  • Neuman SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk A 17:291–305. https://doi.org/10.1007/s00477-003-0151-7

    Article  Google Scholar 

  • Nooren CAM, Hoek WZ, Winkels TG, Huizinga A, van der Plicht J, Van Dam R, Van Heteren S, van Bergen MJ, Prins MA, Reimann T, Wallinga J, Cohen KM, Minderhoud PSJ, Middelkoop H (2017) The Usumacinta-Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation. Earth Surf Dynam 5:529–556. https://doi.org/10.5194/esurf-5-529-2017

    Article  Google Scholar 

  • Novelo A, Ramos L (2005) Vegetación acuática. In: Bueno J, Álvarez F, Santiago S (eds) Biodiversidad del estado de Tabasco. Universidad Nacional Autónoma de México-Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City, pp 111–136

    Google Scholar 

  • Odum WE, Heald EJ (1975) The detritus-based food web of an estuarine mangrove community. In: Cronin LE (ed) Estuarine research. Academic Press, New York, pp 265–286

    Google Scholar 

  • Ortiz Pérez MA (1992) Retroceso reciente de la línea de costa del frente deltaico del río San Pedro Campeche-Tabasco. Investig Geogr 25:7–23. https://doi.org/10.14350/rig.59011

    Article  Google Scholar 

  • Ortiz-Pérez MA, Siebe C, Cram S (2005) Diferenciación ecogeográfica de Tabasco. In: Bueno J, Álvarez F, Santiago S (eds) Biodiversidad del estado de Tabasco. Universidad Nacional Autónoma de México and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City, pp 305–320

    Google Scholar 

  • Paradis E (2019) ape: analysis of phylogenetics and evolution. Rpackage version 0.12.2/r18. https://ape-package.ird.fr/. Accessed 19 Feb 2019

  • Patrick WH, Gambrell RP, Faulkner SP (1996) Redox measurements of soils. In: Sparks DL (ed) Methods of soil analysis, Part 3, chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, pp 1255–1273

    Google Scholar 

  • Peel JR, Gulobov J, Mandujano MC, López-Portillo J (2019) Phenology and floral synchrony of Rhizophora mangle along a natural salinity gradient. Biotropica 51:355–363. https://doi.org/10.1111/btp.12644

    Article  Google Scholar 

  • Pennington TD, Sarukhán J (2005) Árboles tropicales de México. Manual para la identificación de las principales especies. Universidad Nacional Autónoma de México and Fondo de Cultura Económica, Mexico City

    Google Scholar 

  • QGIS Development Team (2019). QGIS geographic information system. Open Source Geospatial Foundation Project. https://qgis.osgeo.org. Accessed 23 Jan 2019

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ramos-Reyes R, Zavala-Cruz J, Gama-Campillo LM, Pech-Pool D, Ortiz-Pérez MA (2016) Indicadores geomorfológicos para evaluar la vulnerabilidad por inundación ante el ascenso del nivel del mar debido al cambio climático en la costa de Tabasco y Campeche, México. Bol Soc Geol Mex 68:581–598

    Article  Google Scholar 

  • Ramsar Convention on Wetlands (2008). https://www.ramsar.org. Accessed 10 Feb 2019

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Saenger P (2013) Mangrove ecology, silviculture and conservation. Springer, Dordrecht

    Google Scholar 

  • Saenger P, Hegerl EJ, Davie JD (1983) Global status of mangrove ecosystems. Environmentalist 3:7–79

    Google Scholar 

  • Salas-Morales SH, González EJ, Meave JA (2018) Canopy height variation and environmental heterogeneity in the tropical dry forests of Coastal Oaxaca, Mexico. Biotropica 50:26–38. https://doi.org/10.1111/btp.12491

    Article  Google Scholar 

  • Sánchez AJ, Salcedo MA, Florido R, Mendoza JD, Ruiz-Carrera V, Álvarez-Pliego N (2015) Ciclos de inundación y conservación de servicios ambientales en la cuenca baja de los ríos Grijalva-Usumacinta. ContactoS 97:5–14

    Google Scholar 

  • Scott DA, Jones TA (1995) Classification and inventory of wetlands: a global overview. Vegetatio 118:3–16. https://doi.org/10.1007/BF00045186

    Article  Google Scholar 

  • Solórzano JV, Gallardo-Cruz JA, González EJ, Peralta-Carreta C, Hernández-Gómez M, Fernández-Montes de Oca A, Cervantes-Jiménez LG (2018) Contrasting the potential of Fourier transformed ordination and gray level co-occurrence matrix textures to model a tropical swamp forest’s structural and diversity attributes. J Appl Remote Sens 12:0360061–03600619. https://doi.org/10.1117/1.JRS.12.036006

    Article  Google Scholar 

  • Spence DHN (1982) The zonation of plants in freshwater lakes. Adv Ecol Res 12:37–125. https://doi.org/10.1016/S0065-2504(08)60077-X

    Article  Google Scholar 

  • Tamai S, Nakasuga T, Tabuchi R, Ogino K (1986) Standing biomass of mangrove forest in southern Thailand. J Jap For Soc 68:384–388. https://doi.org/10.11519/jjfs1953.68.9_384

    Article  Google Scholar 

  • Teixeira AP, Assis MA, Siqueira FR, Casagrande JC (2008) Tree species composition and environmental relationships in a neotropical swamp forest in Southeastern Brazil. Wetl Ecol Manage 16:451–461. https://doi.org/10.1007/s11273-008-9082-x

    Article  Google Scholar 

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53:358–367. https://doi.org/10.1111/j.1365-2427.2007.01898.x

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Torres-Fernández del Campo J, Olvera-Vargas M, Figueroa-Rangel BL, Cuevas-Guzmán R, Iñiguez-Dávalos LI (2018) Patterns of spatial diversity and structure of mangrove vegetation in Pacific West-Central Mexico. Wetlands 38:919–931. https://doi.org/10.1007/s13157-018-1041-6

    Article  Google Scholar 

  • Vovides AG, Vogt J, Kollert A, Berger U, Grüters U, Peters R, Lara-Domínguez AL, López-Portillo J (2014) Morphological plasticity in mangrove trees: salinity-related changes in the allometry of Avicennia germinans. Trees 28:1413–1425. https://doi.org/10.1007/s00468-014-1044-8

    Article  Google Scholar 

  • Wintle BA, McCarthy MA, Volinsky CT, Kavanagh RP (2003) The use of Bayesian model averaging to better represent uncertainty in ecological models. Conserv Biol 17:1579–1590. https://doi.org/10.1111/j.1523-1739.2003.00614.x

    Article  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Illic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum, Dryad Digital Repository. https://datadryad.org/resource/doi:10.5061/dryad.234. Accessed 28 Jan 2019

Download references

Acknowledgements

We are grateful to Derio Jiménez López, Osvaldo Hernández Martínez, Aldo Martínez, Matías Hernández, Nikolay Luna and Miguelina Sánchez for assistance in field work. Eduardo Pérez-García commented on an earlier version of this manuscript and Edgar J. González provided guidance for data analysis. Comments from Trudy Kavanagh and two anonymous reviewers considerably improved the manuscript. This study was funded by CONACyT, the National Council of Science and Technology of Mexico, through Grants FORDECyT 273646 and LANRESC 293354. This paper constitutes a partial fulfillment of the Programa de Posgrado en Ciencias Biológicas (Doctorado), Universidad Nacional Autónoma de México. D.C. received a doctoral scholarship from CONACyT, Mexico.

Funding

CONACyT, the National Council of Science and Technology of Mexico, Grants FORDECyT 273646 and LANRESC 293354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Meave.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez, D., Gallardo-Cruz, J.A., Solórzano, J.V. et al. Spatial correlates of floristic and structural variation in a Neotropical wetland forest. Wetlands Ecol Manage 28, 341–356 (2020). https://doi.org/10.1007/s11273-020-09718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-020-09718-z

Keywords

Navigation