Skip to main content

Advertisement

Log in

Genes in space: what Mojave desert tortoise genetics can tell us about landscape connectivity

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat loss and fragmentation in the Mojave desert have been increasing, which can create barriers to movement and gene flow in populations of native species. Disturbance and degradation of Mojave desert tortoise habitat includes linear features (e.g. highways, railways, a network of dirt roads), urbanized areas, mining activities, and most recently, utility-scale solar facilities. To evaluate the spatial genetic structure of tortoises in an area experiencing rapid habitat loss, we genotyped 299 tortoises at 20 microsatellite loci from the Ivanpah valley region along the California/Nevada border. We used a Bayesian clustering analysis to quantify population genetic structure across valley and mountain pass habitats. A spatial principal components analysis was used to further investigate patterns with isolation-by-distance. To explicitly consider landscape features (e.g. habitat and anthropogenic linear barriers), we used maximum likelihood population effects analyses. We quantified recent gene flow through relatedness using a maximum likelihood pedigree approach. We detected three genetic clusters that generally corresponded to valleys separated by mountains, with one genetically distinguishable population in a mountain pass. Pedigree analyses showed second order relationships up to 60 km apart suggesting a greater range of interactions and inter-relatedness than previously suspected. Our results support historical gene flow with isolation-by-resistance and reveal reduced genetic connectivity across two parallel linear features bisecting our study area (a railway and a highway). Our work demonstrates the potential for tortoises to use a range of habitats, spanning valleys to mountain passes, but also indicates habitat fragmentation limits connectivity with relatively rapid genetic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5(4):384–387

    Article  Google Scholar 

  • Alberto F (2009) MsatAllele 10: an R package to visualize the binning of microsatellite alleles. J Hered 100(3):394–397

    Article  CAS  PubMed  Google Scholar 

  • Allison LJ, McLuckie AM (2018) Population trends in Mojave desert tortoises (Gopherus agassizii). Herpetol Conserv Biol 13(2):433–452

    Google Scholar 

  • Anderson D, Burnham K (2004) Model selection and multi-model inference, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Averill-Murray RC, Darst CR, Field KJ, Allison LJ (2012) A new approach to conservation of the Mojave desert tortoise. Bioscience 62(10):893–899

    Article  Google Scholar 

  • Averill-Murray RC, Darst CR, Strout N, Wong M (2013) Conserving population linkages for the Mojave desert tortoise (Gopherus agassizii). Herpetol Conserv Biol 8(1):1–15

    Google Scholar 

  • Beier P, Loe S (1992) A checklist for evaluating impacts to wildlife movement corridors. Wildl Soc B 20(4):434–440

    Google Scholar 

  • Berish JE, Medica PA (2014) Home range and movements of North American tortoises. In: Rostal DC, McCoy ED, Mushinsky HR (eds) Biology & conservation of North American tortoises. John Hopkins University Press, Baltimore, pp 96–101

    Google Scholar 

  • Berry KH, Aresco MJ (2014) Threats to conservation needs for North American tortoises. In: Rostal DC, McCoy ED, Mushinsky HR (eds) Biology & conservation of North American tortoises. John Hopkins University Press, Baltimore, pp 149–158

    Google Scholar 

  • BLM (Bureau of Land Management) (2010) Silver state north solar project: Clark County, Nevada, USA. https://www.blm.gov/style/medialib/blm/nv/field_offices/las_vegas_field_office/energy/nextlight_-_other/nextlight_map.Par.94625.File.dat/Project%20Fact%20Sheet%2002Nov10.pdf. Accessed Nov 2015

  • Boarman WI, Sazaki M, Jennings WB (1997) The effect of roads, barrier fences, and culverts on desert tortoise populations in California, USA. In: Proc: Conserv, Restor, Manage Tortoise Turtles-Int Conf, pp 149–158

  • BrightSource Energy (2014) Ivanpah project overview. https://www.brightsourceenergy.com/ivanpahsolarproject#.U1tk_ldV8F. Accessed Nov 2015

  • Britten HB, Riddle BR, Brussard PF, Marlow R, Lee TE Jr (1997) Genetic delineation of management units for the desert tortoise, Gopherus agassizii, in Northeastern Mojave desert. Copeia 3:523–530

    Article  Google Scholar 

  • Brooks ML (2000) Does protection of desert tortoise habitat generate other ecological benefits in the Mojave desert? USDA For Serv Proc 15(3):68–73

    Google Scholar 

  • Corn PS (1994) Recent trends of desert tortoise populations in the Mojave desert. In: Bury RB, Germano DJ (eds) Biology of North American tortoises, vol. 13. National Biological Survey, Fish and Wildlife Research, pp 85–94

  • Dickson BG, Albano CM, McRae BH, Anderson JJ, Theobald DM, Zachman LJ, Sisk TD, Dombeck MP (2016) Informing strategic efforts to expand and connect protected areas using a model of ecological flow, with application to the western United States. Conserv Lett 10(5):564–571

    Article  Google Scholar 

  • DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep 1(3):115–126

    Article  Google Scholar 

  • Doak D, Kareiva P, Klepetka B (1994) Modeling population viability for the desert tortoise in the Western Mojave desert. Ecol Appl 4(3):446–460

    Article  Google Scholar 

  • Edwards T, Goldberg CS, Kaplan ME, Schwalbe CR (2003) PCR primers for microsatellite loci in the desert tortoise (Gopherus agassizii, Testudinidae). Mol Ecol Notes 3(4):589–591

    Article  CAS  Google Scholar 

  • Edwards T, Schwalbe CR, Swann DE, Goldberg CS (2004) Implications of anthropogenic landscape change on inter-population movements of the desert tortoise (Gopherus agassizii). Conserv Genet 5(4):485–499

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81(1):117–142

    Article  PubMed  Google Scholar 

  • Francis RM (2017) PopHelper: an R package and web app to analyze and visualize population structure. Mol Ecol Resour 17(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Germano DJ, Bury RB, Esque TC, Fritts TH, Medica PA (1994) Range and habitats of the desert tortoise. Biol N Am Tortoises 13:73–84

    Google Scholar 

  • Goble DD (2009) The endangered species act: what we talk about when we talk about recovery. Nat Resour J 49:1–44

    Google Scholar 

  • Haddad NM, Brudig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015) Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci Adv 1(2):e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagerty BE, Tracy CR (2010) Defining population structure for the Mojave desert tortoise. Conserv Genet 11(5):1795–1807

    Article  Google Scholar 

  • Hagerty BE, Peacock MM, Kirchoff V, Tracy CR (2008) Polymorphic microsatellite markers for the Mojave desert tortoise, (Gopherus agassizii). Mol Ecol Resour 8(5):1149–1151

    Article  CAS  PubMed  Google Scholar 

  • Hagerty BE, Nussear KE, Esque TC, Tracy CR (2011) Making molehills out of mountains: landscape genetics of the Mojave desert tortoise. Landsc Ecol 26(2):267–280

    Article  Google Scholar 

  • Hand BK, Cushman SA, Landguth EL, Lucotch J (2014) Assessing multi-taxa sensitivity to the human footprint, habitat fragmentation and loss by exploring alternative scenarios of dispersal ability and population size: a simple approach. Biodivers Conserv 23(11):2761–2779

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396(6706):41–49

    Article  CAS  Google Scholar 

  • Heaton JS, Nussear KE, Esque TE, Inman RD, Davenport FM, Leuteritz TE, Medica PA, Stout NW, Burgess PA, Benvenuti L (2008) Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises. Biodivers Conserv 17(3):575–590

    Article  Google Scholar 

  • Henein K, Merriam G (1990) The elements of connectivity where corridor quality is variable. Landsc Ecol 4(2–3):157–170

    Article  Google Scholar 

  • Hernandez-Divers SM, Hernandez-Divers SJ, Wyneken J (2002) Angiographic, anatomic and clinical technique descriptions of a subcarapacial veni-puncture site for chelonians. J Herpetol Med Surg 12(2):32–37

    Article  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58(3):199–207

    Article  Google Scholar 

  • Hubisz MA, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughson DL (2009) Human population in the Mojave desert: resources and sustainability. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave desert: ecosystem processes and sustainability. University of Nevada Press, Reno, pp 57–77

    Google Scholar 

  • Ironwood Consulting (2012) Biological resources technical report, silver state solar south, Clark County, Nevada. Prepared for Silver State Solar Power South, LLC

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101(1):92–103

    Article  CAS  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) Colony: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10(3):551–555

    Article  PubMed  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19(19):4179–4191

    Article  CAS  PubMed  Google Scholar 

  • Leu M, Hanser SE, Knick ST (2008) The human footprint in the west: a large-scale analysis of anthropogenic impacts. Ecol Appl 18(5):1119–1139

    Article  PubMed  Google Scholar 

  • Lovich JE, Ennen JR (2011) Wildlife conservation and solar energy development in the desert southwest, United States. Bioscience 61(12):982–992

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19(15):3038–3051

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220

    CAS  PubMed  Google Scholar 

  • Morafka DJ, Berry KH (2002) Is Gopherus agassizii a desert-adapted, or an exaptive opportunist? Implications for tortoise conservation. Chelonian Conserv Biol 4(2):263–287

    Google Scholar 

  • Murphy RW, Berry KH, Edwards T, McLuckie AM (2007) A genetic assessment of the recovery units for the mojave population of the desert tortoise, Gopherus agassizii. Chelonian Conserv Biol 6(2):229–251

    Article  Google Scholar 

  • Nussear KE, Esque TC, Inman RD, Gass L, Thomas KA, Wallace CSA, Blainey JB, Miller DM, Webb RH (2009) Modeling habitat for the desert tortoise (Gopherus agassizii) in the Mojave and Parts of the Sonoran deserts of California, Nevada, Utah, and Arizona. U.S. Geological Survey Open-File Report 2009-1102

  • O’Connor MP, Zimmerman LC, Ruby DE, Bulova SJ, Spotila JR (1994) Home range size and movements by desert tortoises, Gopherus agassizii, in the Eastern Mojave desert. Herpetol Monogr 8:60–71

    Article  Google Scholar 

  • Peaden JM, Nowakowski AJ, Tuberville TD, Buhlmann KA, Todd BD (2017) Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. Biol Conserv 214:13–22

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel, population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9(6):1638–1647

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prunier JG, Kaufman B, Lena JP, Fenet S, Pompanon F, Joly P (2014) A 40-year-old divided highway does not prevent gene flow in the alpine Newt Ichthyosaura alpestris. Conserv Genet 15(2):453–468

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43(2):258–275

    Article  PubMed  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Apr 2019

  • Rautsaw RM, Martin SA, Vincent BA, Lanctot K, Bolt MR, Seigel RA, Parkinson CL (2018) Stopped dead in their tracks: the impact of railways on gopher tortoise (Gopherus polyphemus) movement and behavior. Copeia 106(1):135–143

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset F (2008) GenePop’007: a complete re-implementation of the GenePop software for windows and linux. Mol Ecol Resour 8(1):103–106

    Article  PubMed  Google Scholar 

  • Sadoti G, Gray ME, Farnsworth ML, Dickson BG (2017) Discriminating patterns and drivers of multiscale movement in herpetofauna: the dynamic and changing environment of the mojave desert tortoise. Ecol Evol 7(17):7010–7022

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ramirez S, Rico Y, Berry KH, Edwards T, Karl AE, Henen BT, Murphy RW (2018) Landscape limits gene flow and drives population structure in Agassiz’s desert tortoise (Gopherus agassizii). Sci Rep 8(1):11231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet. https://doi.org/10.1007/s10592-008-9622-1

    Article  Google Scholar 

  • Schwartz TS, Osentoski M, Lamb T, Karl SA (2003) Microsatellite loci for the North American tortoises (Genus Gopherus) & their Applicability to other turtle species. Mol Ecol Notes 3(2):283–286

    Article  CAS  Google Scholar 

  • Shaffer HB, McCartney-Melstad E, Ralph P, Bradburd G, Lundgren E, Vu J, Hagerty B, Sandmeier F, Weitzman C, Tracy R (2015) Desert tortoises in the genomic age: population genetics and landscape. Draft Final Report to the California Department of Fish and Wildlife

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16(1):393–430

    Article  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98(3):128–142

    Article  CAS  PubMed  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. PNAS 99(20):12923–12926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracy CR, Averill-Murray R, Boarman WI, Delehanty D, Heaton J, McCoy E, Morafka DJ, Nussear KE, Hagerty B, Medica P (2004) Desert tortoise recovery plan assessment. U.S. Fish & Wildlife Service, Desert Tortoise Recovery Plan Assessment Committee

  • Tuma M, Stanford CB (2014) History of human interaction with North American tortoises. In: Rostal DC, McCoy ED, Mushinsky HR (eds) Biology & conservation of North American tortoises. John Hopkins University Press, Baltimore, pp 143–148

    Google Scholar 

  • USFWS (U.S. Fish & Wildlife Service) (1994) Desert tortoise (Mojave population) recovery plan. U.S. Fish & Wildlife Service, Portland

    Google Scholar 

  • USFWS (U.S. Fish & Wildlife Service) (2011) Revised recovery plan for the mojave population of the desert tortoise (Gopherus agassizii). Pacific Southwest Region, Sacramento

  • Vandergast AG, Kus BE, Preston KL, Barr KR (2019) Distinguishing recent dispersal from historical genetic connectivity in the coastal California Gnatcatcher. Sci Rep 9(1):1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner PA, Willis BL, Van Oppen MJH (2016) Sperm dispersal distances estimated by parentage analysis in a brooding Scleractinian coral. Mol Ecol 25(6):1398–1415

    Article  PubMed  Google Scholar 

  • Webb RH, Wilshire HG (1980) Recovery of soils and vegetation in a Mojave Desert Ghost Town, Nevada, USA. In: Proceedings of 1980 symposium: a compilation of reports and papers presented at the fifth annual symposium of the desert tortoise council, 22–24 March, 1980 Riverside, California

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    CAS  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28(2):114–138

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the many individuals who have contributed to the acquisition of data including Kristina Drake, Felicia Chen, Ben Gottsacker, Amanda McDonald, Jordan Schwart, Sara Murray, Steve Hromada, Brett Dickson, and Ironwood Consulting. This work was supported by the U.S. Bureau of Land Management, the U.S. Fish and Wildlife Service, the National Fish and Wildlife Foundation, and the U.S. Geological Survey Ecosystems Mission Area Energy and Wildlife Program. We are particularly grateful to Amy Fesnock (BLM—California) and Mark Slaughter (BLM—Nevada) for their support of our desert tortoise research program. All tortoises were handled according with USFWS Permit (permit TE-030659-10), Nevada Department of Wildlife Scientific Collection Permit 317351, University of Nevada, Reno Animal Care and Use Committee protocol (IACUP 00671), and a Memorandum of Understanding with the California Department of Fish and Wildlife (all to T. Esque). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten E. Dutcher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutcher, K.E., Vandergast, A.G., Esque, T.C. et al. Genes in space: what Mojave desert tortoise genetics can tell us about landscape connectivity. Conserv Genet 21, 289–303 (2020). https://doi.org/10.1007/s10592-020-01251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01251-z

Keywords

Navigation