Skip to main content
Log in

Species delimitation in the African tree genus Lophira (Ochnaceae) reveals cryptic genetic variation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Species delimitation remains a crucial issue for widespread plants occurring across forest-savanna ecotone such as Lophira (Ochnaceae). Most taxonomists recognize two parapatric African tree species, widely distributed and morphologically similar but occurring in contrasted habitats: L. lanceolata in the Sudanian dry forests and savannahs and L. alata in the dense Guineo-Congolian forests. Both species co-occur along a ca. 3000 km long forest-savanna mosaic belt, constituting ideal models for investigating hybridization patterns and the impact of past glacial periods on the genetic structures in two types of ecosystems. We genotyped 10 nuclear microsatellites for 803 individuals sampled across the distribution range of Lophira. Both species exhibit similar levels of genetic diversity [He = 0.52 (L. alata); 0.44 (L. lanceolata)] and are well differentiated, consistent with taxonomic delimitation (FST = 0.36; RST = 0.49), refuting the hypothesis that they might constitute ecotypes rather than distinct species. Furthermore, L. alata displayed two deeply differentiated clusters (FST = 0.37; RST = 0.53) distributed in parapatry, one endemic to Western Gabon while another cluster extended over the remaining species range, suggests that L. alata is made of two cryptic species. We showed that rare hybrids occur in some contact zones between these three species, leaving a weak signal of introgression between L. lanceolata and the northern cluster of L. alata. At the intra-specific level, the latter species also show weak genetic structuring between Upper and Lower Guinea and the intensity did not differ strikingly between rainforest and savanna ecosystems. The discovery of a new species of Lophira with a narrow distribution in West Gabon where it is intensively exploited for its timber requires to evaluate its conservation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akoegninou A, van der Burg WJ, van der Maesen JG (2006) Flore analytique du Bénin. Backhuys Publishers, Leiden

    Google Scholar 

  • Allal F, Sanou H, Millet L, Vaillant A, Camus-Kulandaivelu L, Logossa ZA et al (2011) Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107:601. https://doi.org/10.1038/hdy.2011.112

    Article  PubMed Central  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  PubMed Central  CAS  Google Scholar 

  • Anon, Chev (1954) Monographie de Azobé, Lophira procera A. Centre Technique Forestier Tropical, Nogent-sur-Marne

    Google Scholar 

  • Aubreville A (1959) La flore forestière de la Côte d’Ivoire, 2nd ed. Centre Technique Forestier Tropical, Nogent-sur-Marne, p 958

    Google Scholar 

  • Bamps P (1970) Répartition géographique du genre Lophira Banks ex Gaertn. (Ochnaceae). Bull Jard Bot Belg 40:291–294

    Article  Google Scholar 

  • Biwole A, Bourland N, Daïnou K, Doucet J-L (2012) Définition du profil écologique de l’azobé, Lophira alata, une espèce ligneuse africaine de grande importance: synthèse bibliographique et perspectives pour des recherches futures. Biotechnol Agron Soc Environ 16:217–228

    Google Scholar 

  • Born C, Alvarez N, McKey D, Ossari S, Wickings EJ, Hossaert-McKey M et al (2011) Insights into the biogeographical history of the Lower Guinea Forest Domain: evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana. Mol Ecol 20:131–142

    Article  PubMed  Google Scholar 

  • Channan S, Collins K, Emanuel WR (2014) Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, College Park

    Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Daïnou K, Blanc-Jolivet C, Degen B, Kimani P, Ndiade-Bourobou D, Donkpedan ASL et al (2016) Revealing hidden species diversity in closely related species using nuclear SNPs, SSRs and DNA sequences: a case study in the tree genus Milica. Evol Biol 16:259. https://doi.org/10.1186/st12862-016-0831-9

    Article  Google Scholar 

  • Daïnou K, Flot J-F, Degen B, Blanc-Jolivet C (2017) DNA taxonomy in the timber genus Milica: evidence of unidirectional introgression in the West African contact zone. Tree Genet Genomes.https://doi.org/10.1007/s11295-017-1174-4

    Article  Google Scholar 

  • Dauby G, Zaiss R, Blach-Overgaard A, Catarino L, Damen T, Deblauwe V et al (2016) Rainbio: a megadatabase of tropical Africa vascular plants distribution. Phyto Keys 74:1–18

    Google Scholar 

  • de Lafontaine G, Napier JD, Petit RJ, Hu FS (2018) Invoking adaptation to decipher the genetic legacy of past climate change. Ecology 99:1530–1546

    Article  PubMed  Google Scholar 

  • Demenou B, Pineiro R, Hardy OJ (2016) Origin and history of the Dahomey Gapseparating West and Central African rainforests: insights from the phylogeography of the legume tree Distemonanthus benthamianus. J Biogeogr 43:1020–1031

    Article  Google Scholar 

  • Demenou B, Doucet J-L, Hardy O (2017) History of the fragmentation of the African rainforest in the Dahomey Gap: insight from the demographic history of Terminalia superba. Heredity 120:547–561

    Article  PubMed  PubMed Central  Google Scholar 

  • Duminil J, Heuertz M, Doucet J-L, Bourland N, Cruaud C, Gavory F et al (2010) Cp-DNA based species identification and phylogeography: application to African tropical tree species. Mol Ecol 19:5469–5483. https://doi.org/10.1111/j.1365-294X.2010.04917.x

    Article  PubMed  CAS  Google Scholar 

  • Duminil J, Brown RP, Ewedje EBK, Mardulyn P, Doucet J-L, Hardy OJ (2013) Large-scale pattern ofgenetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp. (Fabaceae). BMC Evol Biol 13:1–13

    Article  Google Scholar 

  • Dupont LM, Jahns S, Marret F, Ning S (2000) Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeogr Palaeoclimatol Palaeoecol 155:95–122. https://doi.org/10.1016/S0031-0182(99)00095-4

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  • Fayolle A, Swaine MD, Bastin J-F, Bourland N, Comiskey J, Dauby G, Doucet J-L, Gillet J-F, Gourlet-Fleury S, Hardy O, Kirunda B, Kouamé FN, Plumptre AJ (2014) Patterns of tree species composition across tropical African forests. J Biogeogr.https://doi.org/10.1111/jbi.12382

    Article  Google Scholar 

  • Fontaine C, Lovett PN, Sanou H, Maley J, Bouvet J-M (2004) Genetic diversity of the shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93:639–648. https://doi.org/10.1038/sj.hdy.6800591

    Article  PubMed  CAS  Google Scholar 

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets, 2001–2012, collection 5.1 IGBP land cover. Boston University, Boston

    Google Scholar 

  • Gomez C, Dussert S, Hamon P, Hamon S, Kochko A, Poncet V (2009) Current genetic differentiation of Coffeacanephora Pierre ex A. Froehnin the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:167. https://doi.org/10.1186/1471-2148-9-167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2001) Patterns of allozyme variation in diploid and tetraploid Centaurea jacea at different spatial scales. Evolution 55:943–954

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. https://doi.org/10.1046/j.1471-8286.2002.00305.x

    Article  CAS  Google Scholar 

  • Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy OJ, Born C, Budde K, Daïnou K, Dauby G, Duminil J et al (2013) Comparative phylogeography of African rainforest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. C R Geosci 345:284–296. https://doi.org/10.1016/j.crte.2013.05.001

    Article  Google Scholar 

  • Harrison RG, Bogdanowicz (1997) Patterns of variation and linkage disequilibrium in a field cricket hybrid zone. Evolution 51:493. https://doi.org/10.2307/2411122

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson J, Dalziel JM (1954) Flora of west tropical Africa, 2nd ed. Crown Agents for Overseas Goverments Administrations, London

    Google Scholar 

  • Ikabanga DU, Stévart T, Koffi GK, Monthe FK, Nzigou Doubindou EC, Dauby G et al (2017) Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus Santiria (Burseraceae). Phytotaxa 321:166–180. https://doi.org/10.11646/phytotaxa.321.2.2

    Article  Google Scholar 

  • IUCN (2014) The IUCN red list of threatened species. Version 2014.3. www.iucnredlist.org. Accessed 25 Sept 2015

  • Jiggins CD, Mallet J (2000) Biomodal hybrid zones and speciation. Trends Ecol Evol 15:250–255

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    Article  PubMed  CAS  Google Scholar 

  • Jost L, Archer F, Flanagan S, Gaggiotti O, Hoban S, Latch E (2018) Differentiation measures for conservation genetics. Evol Appl 11 (7):1139–1148

    Article  PubMed  PubMed Central  Google Scholar 

  • Keay RWJ (1953) Revision of the “Flora of west tropical Africa: Ochnaceae. Kew Bull 8:487–492

    Article  Google Scholar 

  • Koffi KG, Hardy OJ, Doumenge C, Cruaud C, Heuertz M (2011) Diversity gradients and phylogeographic patterns in a widespread African tree typical of mature rainforests, Santiria trimera (Burseraceae). Am J Bot 98:254–264. https://doi.org/10.3732/ajb.1000220

    Article  PubMed  CAS  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a programm for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res 15:1179–1191. https://doi.org/10.1111/1755-0998.12387

    Article  CAS  Google Scholar 

  • Letouzey R (1957) La forêt à Lophira alata de la zone littorale camerounaise. Bois For Trop 53:9–20

    Google Scholar 

  • Letouzey R (1968) Étude phytogéographique du Cameroun. Paris

  • Li YL, Liu JX (2018) StructureSelector: a web based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Res 18:176–177

    Article  Google Scholar 

  • Lissamou B-J, Couvreur TLP, Atteke C, Stevart T, Piñeiro R, Dauby G et al (2018) Species delimitation in the genus Greenwayodendron based on morphological and genetic markers reveal new species. Taxon 68:442–454

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lowe AJ, Harris D, Dormontt E, Dawson IK (2010) Testing putative African tropical forest refugia using chloroplast and nuclear DNA phylogeography. Trop Plant Biol 3:50–58. https://doi.org/10.1007/s12042-010-9045-2

    Article  Google Scholar 

  • Lowry DB, Rockwood RC, Willis JH (2008) Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62:2196–2214. https://doi.org/10.1111/j.1558-5646.2008.00457.x

    Article  PubMed  Google Scholar 

  • Maley J (1996) The African rainforest: main characteristics of changes in vegetationand climate from the upper cretaceous to quaternary. Proc R Soc Edinb 104B:31–73

    Google Scholar 

  • Mapongmetsem P-M (2007) Lophira lanceolata Tiegh. ex Keay. [Internet] Record from PROTA4U. van der Vossen HAM. and Mkamilo GS (eds). PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. http://www.prota4u.org/search.as. Accessed 23 Dec 2019

  • Meunier Q, Moumbogou C, Doucet J-L (2015) Les arbres utiles du Gabon. Presses agronomiques de Gembloux, Gembloux

    Google Scholar 

  • Migliore J, Kaymak E, Mariac C, Couvreur TLP, Lissambou B-J, Piñeiro R, Hardy OJ (2018) Pre-Pleistocene origin of phylogeographical breaks in African rain forest trees: New insights from (Annonaceae) phylogenomics. J Biogeogr. https://doi.org/10.1111/jbi.13476

    Article  Google Scholar 

  • Mondol S, Moltke I, Hart J, Keigwin M, Brown L, Stephans et al (2015) New evidence for hybrid zones of forest and savanna elephants in Central and West Africa. Mol Ecol 24:6134–6147. https://doi.org/10.1111/mec.13472

    Article  PubMed  CAS  Google Scholar 

  • Morales CL, Traveset A (2008) Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit Rev Plant Sci 27:221–238. https://doi.org/10.1080/07352680802205631

    Article  CAS  Google Scholar 

  • Morgan-Richards M, Trewick SA, Stringer IA (2010) Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Mol Ecol 19:1227–1238. https://doi.org/10.1111/j.1365-294X.2010.04542.x

    Article  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance froma small number of individuals. Genetics 89:583–590

    PubMed  PubMed Central  CAS  Google Scholar 

  • Odee DW, Telford A, Wilson J, Gaye A, Cavers S (2012) Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109:372–382. https://doi.org/10.1038/hdy.2012.52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persinos GJ, Quimby MW (1968) Studies on Nigerian plants V. comparative anatomy of Lophira lanceolata and Lophira alata. Econ Bot 22:206–220

    Article  Google Scholar 

  • Piñeiro R, Staquet A, Hardy OJ (2015) Isolation of nuclear microsatellites in the African timber tree Lophira alata (Ochnaceae) and cross-amplification in L. lanceolata. Appl Plant Sci 3:1500–1056. https://doi.org/10.3732/apps.1500056

    Article  Google Scholar 

  • Plana V, Gascoigne A, Forrest LL, Harris D, Pennington RT (2004) Pleistocene and pre-pleistocene Begonia speciation in Africa. Mol Phylogenet Evol 31:449–461. https://doi.org/10.1016/j.ympev.2003.08.023

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens JC, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Res 16:608–627. https://doi.org/10.1111/1755-0998.12512

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

    Article  PubMed  Google Scholar 

  • Satabie B (1982) Le phénomène de vicariance chez deux espèces ecophylétiques au Cameroun: Lophira alata Banks ex Gaertn. f. et Lophira lanceolata Van Tiegh. ex Keay (Ochnaceae), PhD thesis, Universite de Yaounde, Cameroon

  • Schemske DW (2000) Understanding the origin of species. Evolution 54:1069–1073

    Article  Google Scholar 

  • Sexton GJ, Fere CH, Kalinganire A, Uwamariya A, Lowe AJ, Godwin ID et al (2015) Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Tree Genet Genomes 11:103. https://doi.org/10.1007/s11295-015-0933-3

    Article  Google Scholar 

  • Smith TB, Schneider CJ, Holder K (2001) Refugial isolation versus ecological gradients. Genetica 112/113:383–398

    Article  Google Scholar 

  • Sobel JM, Chen GF, Watt LR, Schemske DW (2009) The biology of speciation. Evolution 64:295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.x

    Article  PubMed  Google Scholar 

  • Von Thieme HW (1929) Das bongossiholz und seine abstammung. Botanisches Archiv. Band 26. Leipzig

  • Weir BS (1996) Genetic data analysis. II. Sinauer Associates, Sun-derland, MA

  • White F (1979) The Guineo-Congolian region and its relationships to other phytochoria. Bull Natl Plant Belg 49:11–55

    Article  Google Scholar 

  • Whitlock MC (2011) Gst’ and D do not replace Fst. Mol Ecol 20:1083–1091

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Belgian Federal Science Policy Office (Belspo) through a postdoctoral grant (EEBK) within the project AFRIFORD, and by the F.R.S.-FNRS (Grant No. J.0292.17). Furthermore, this project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 801505. We would like to thank Dakis-Yaoba Ouedraogo for providing herbarium data for L. alata individuals from Gabon including phenological traits, and Marc Sosef for having compared the few herbarium vouchers from western Gabon and eastern/northern Gabon available at the Meise Botanic Garden (BR). We thank CENAREST (Gabon) for the sampling permission (AR0012/18). Moreover, we thank the three anonymous reviewers whose comments have greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Jansen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 515.2 kb)

Supplementary material 2 (TIFF 107.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewédjè, EE.B.K., Jansen, S., Koffi, G.K. et al. Species delimitation in the African tree genus Lophira (Ochnaceae) reveals cryptic genetic variation. Conserv Genet 21, 501–514 (2020). https://doi.org/10.1007/s10592-020-01265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01265-7

Keywords

Navigation