Skip to main content

Advertisement

Log in

Local extirpation is pervasive among historical populations of Galápagos endemic tomatoes

  • Natural History Notes
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2020

This article has been updated

Abstract

The Galápagos Islands are home to incredible endemic biodiversity that is of high conservation interest. Two such endemic species are the Galápagos tomatoes: Solanum cheesmaniae and Solanum galapagense. Both are known from historical location records, but like many endemic plant species on the Galápagos, their current conservation status is unclear. We revisited previously documented sites of endemic species on San Cristóbal, Santa Cruz, and Isabela, and document the disappearance of > 80% of these populations. In contrast, we find that two invasive relatives (Solanum pimpinellifolium and Solanum lycopersicum) are now highly abundant, and in some cases—based on morphological observations—might be hybridizing with endemics. Our findings suggest that expanding human developments and putative interspecific hybridization are among the major factors affecting the prevalence of invasives and the threatened persistence of the endemic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 04 May 2020

    The affiliation of the second author was incorrectly published in the original article.

References

  • Anderson E (1948) Hybridization of the habitat. Evolution 2:1–9. https://doi.org/10.2307/2405610

    Article  Google Scholar 

  • Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8(4):378. https://doi.org/10.2307/2405784

    Article  Google Scholar 

  • Chapman CA, Chapman LJ (1995) Survival without dispersers: seedling recruitment under parents. Conserv Biol 9(3):675–678

    Article  Google Scholar 

  • Chaves JA (2018) Genetic consequences of invasive species in the Galapagos Islands. In: Lourdes Torres ML, Mena CF (eds) Understanding invasive species on the galapagos. Springer, Berlin, pp 19–32

    Chapter  Google Scholar 

  • D’Antonio CM, Dudley TL (1995) Biological invasions as agents of change on islands versus mainlands. In: Vitousek PM, Loope LL, Andersen H (eds) Islands: biological diversity and ecosystem function. Springer, Berlin, pp 103–121

    Chapter  Google Scholar 

  • Darwin SC (2009) The systematics and genetics of tomatoes on the Galapagos Islands. University College London, London

    Google Scholar 

  • Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galápagos Islands: native and introduced species of Solanum sect Lycopersicon (Solanaceae). Syst Biodivers 1(1):29–53. https://doi.org/10.1017/S1477200003001026

    Article  Google Scholar 

  • De Leon LF, Sharpe DMT, Gotanda KM, Raeymaekers JAM, Chaves JA, Hendry AP, Podos J (2018) Urbanization erodes niche segregation in Darwin’s finches. Evol Appl 12(7):1329–1343

    Article  Google Scholar 

  • Firdaus S, van Heusden AW, Hidayati N, Supena EDJ, Mumm R, de Vos R, Visser RG, Vosman B (2013) Identification and QTL mapping of whitefly resistance components in Solanum galapagense. Theor Appl Genet 126(6):1487–1501

    Article  CAS  Google Scholar 

  • Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot. https://doi.org/10.2307/2656988

    Article  PubMed  Google Scholar 

  • Fuller PL, Nico GL, Williams JD (1999) Nonindigeneous fishes introduced into inland waters of the United States. Am Fish Soc. https://doi.org/10.1046/j.1365-2400.2000.00230.x

    Article  Google Scholar 

  • Hamann O (1979) Regeneration of vegetation on Santa Fé and Pinta Islands, Galápagos, after the eradication of goats. Biol Conserv 15:215–236

    Article  Google Scholar 

  • Hendry AP, Grant PR, Grant BR, Ford HA, Brewer MJ, Podos J (2006) Possible human impacts on adaptive radiation: beak size bimodality in Darwin’s finches. Proc R Soc B Biol Sci 273(1596):1887–1894. https://doi.org/10.1098/rspb.2006.3534

    Article  Google Scholar 

  • Lee KM, Coop G (2016) Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207(4):1591–1619

    Google Scholar 

  • Loope LL, Hamann O, Stone CP (1988) Comparative conservation biology of oceanic archipelagoes: Hawaii and the Galapagos. Bioscience 38(4):272–282

    Article  Google Scholar 

  • Mackinney G, Rick CM, Jenkins JA (1954) Carotenoid differences in Lycopersicon: hybrids of an unusual race of L. pimpinellifolium. Proc Natl Acad Sci 40:695–699

    Article  CAS  Google Scholar 

  • Maschinski J, Sirkin E, Fant J (2010) Using genetic and morphological analysis to distinguish endangered taxa from their hybrids with the cultivated exotic pest plant Lantana strigocamara (syn: Lantana camara). Conserv Genet 11(5):1607–1621. https://doi.org/10.1007/s10592-009-0035-6

    Article  Google Scholar 

  • Mendiburu F (2019) Agricolae: statistical procedures for agricultural research. R package version 1.3-1. https://cran.r-project.org/web/packages/agricolae/index

  • Muhlfeld CC, Kovach RP, Jones LA, Al-Chokhachy R, Boyer MC, Leary RF, Lowe WH, Luikart G, Allendorf FW (2014) Invasive hybridization in a threatened species is accelerated by climate change. Nat Clim Change. https://doi.org/10.1038/nclimate2252

    Article  Google Scholar 

  • Nuez F (1995) Desarrollo de nuevos cultivares. In: Nuez F (ed) El cultivo del tomate. Mundi-Prensa, Madrid, pp 625–669

    Google Scholar 

  • Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galápagos tomatoes: implications for the conservation of natural populations. Am J Bot 91(1):86–99. https://doi.org/10.3732/ajb.91.1.86

    Article  PubMed  Google Scholar 

  • Olson SL (1989) Extinction on islands: man as a catastrophe. In: Western D, Pearl MC (eds) Conservation for the twenty-first century. Oxford University Press, Oxford, pp 50–53

    Google Scholar 

  • Pailles Y, Ho S, Pires IS, Tester M, Negrão S, Schmöckel SM (2017) Genetic diversity and population structure of two tomato species from the Galapagos Islands. Front Plant Sci 8:138. https://doi.org/10.3389/fpls.2017.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Pailles Y, Awlia M, Julkowska M, Passone L, Zemmouri K, Negrão S, Schmöckel SM, Tester M (2020) Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiol 182(1):534–546

    Article  CAS  Google Scholar 

  • Pizzitutti F, Walsh SJ, Rindfuss RR, Gunter R, Quiroga D, Tippett R, Mena CF (2017) Scenario planning for tourism management: a participatory and system dynamics model applied to the Galapagos Islands of Ecuador. J Sustain Tourism 25(8):1117–1137. https://doi.org/10.1080/09669582.2016.1257011

    Article  Google Scholar 

  • Poysa V (1993) Use of Lycopersicon cheesmanii and L. chmielewskii to increase dry matter content of tomato fruit. Can J Plant Sci 73:273–279

    Article  Google Scholar 

  • Quiroga D (2018) Introduced species and the threats to the Galapagos. In: de Lourdes Torres M, Mena CF (eds) Understanding invasive species on the galapagos, 1st edn. Springer, Berlin, pp 13–27

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ranc N, Munos S, Santonie S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130

    Article  Google Scholar 

  • Raven PH (1997) Plant conservation in a changing world. Aliso 16(2):121–126

    Article  Google Scholar 

  • Rick CM (1956) Genetic and systematic studies on accessions of Lycospersicon from the Galapagos Islands. Am J Bot 43:687–695. https://doi.org/10.2307/2438834

    Article  Google Scholar 

  • Rick CM (1963) Biosystematic studies on Galapagos tomatoes. Occasional Papers of the California Academy of Science

  • Rick CM (1967) Fruit and pedicel characters derived from Galapagos tomatoes. Econ Bot 21:171. https://doi.org/10.1007/BF02897867

    Article  Google Scholar 

  • Rick CM (1971) Lycopersicon mill. In: Wiggins IL, Porter DM (eds) Flora of the Galapagos Islands. University of Stanford Press, Stanford, pp 468–471

    Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observations in native habitats. Genes Enzym Popul 2:255–269

    Article  CAS  Google Scholar 

  • Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Linnean Society of London, London, pp 667–677

    Google Scholar 

  • Rick CM (1983) Genetic variability in tomato species. Plant Mol Biol Rep 1(2):81–87. https://doi.org/10.1007/BF02680303

    Article  Google Scholar 

  • Rick CM, Bowman RI (1961) Galápagos tomatoes and tortoises. Evolution 15:407–417. https://doi.org/10.2307/2406309

    Article  Google Scholar 

  • Rick CM, Fobes JF (1975) Allozymes of Galapagos tomatoes: polymorphism, geographic distribution, and affinities. Evolution 29(3):443–457. https://doi.org/10.2307/2407257

    Article  PubMed  Google Scholar 

  • Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170

    Article  Google Scholar 

  • Riley SPD, Shaffer HB, Voss SR, Fitzpatrick BM (2003) Hybridization between a rare, native tiger salamander (Ambystoma californiense) and its introduced congener. Ecol Appl 13(5):1263–1275. https://doi.org/10.1890/02-5023

    Article  Google Scholar 

  • Rush DW, Epstein E (1981) Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domestic tomato. J Am Soc Hortic Sci 106(6):699–704

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  • Schofield EK (1989) Effects of introduced plants and animals on island vegetation: examples from Galápagos Archipelago. Conserv Biol 3(3):227–239

    Article  Google Scholar 

  • Sequeira AS, Stepien CC, Tran CT, Stuckert A, Roque Albelo L, Guo W (2016) Exploring the legacy of goat grazing: signatures of habitat fragmentation on genetic patterns of endemic weevil populations in Northern Isabela Island, Galápagos (Ecuador). Conserv Genet 17:903–920. https://doi.org/10.1007/s10592-016-0831-8

    Article  Google Scholar 

  • Simovich MA, Bohonak AJ, Davis KB (2013) Landscape homogenization threatens the genetic integrity of the endangered San Diego fairy shrimp Branchinecta sandiegonensis (Branchiopoda: Anostraca). J Crustac Biol 33:730–740. https://doi.org/10.1163/1937240X-00002164

    Article  Google Scholar 

  • Stommel JR, Haynes KG (1994) Inheritance of beta carotene content in the wild tomato species Lycopersicon cheesmanii. J Hered 85(5):401–404. https://doi.org/10.1093/oxfordjournals.jhered.a111486

    Article  CAS  Google Scholar 

  • Strong DR, Ayres DR (2013) Ecological and evolutionary misadventures of spartina. Annu Rev Ecol Evol Syst 44(1):389–394. https://doi.org/10.1146/annurev-ecolsys-110512-135803

    Article  Google Scholar 

  • Tanner D, Perry J (2007) Road effects on abundance and fitness of Galápagos lava lizards (Microlophus albemarlensis). J Environ Manag 85:270–278. https://doi.org/10.1016/j.jenvman.2006.08.022

    Article  Google Scholar 

  • Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Rieseberg LH (2016) Hybridization and extinction. Evol Appl 9(7):892–908. https://doi.org/10.1111/eva.12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres ML, Gutierrez B (2018) A preliminary assessment of the genetic diversity and population structure of guava, Psidium guajava, in San Cristobal. In: Torres ML, Mena CF (eds) Understanding invasive species on the Galapagos. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Trueman M, d’Ozouville N (2010) Characterizing the Galapagos terrestrial climate in the face of global climate change. Galapagos Res 67:26–37

    Google Scholar 

  • Tye A, Siemens T (2014) Solanum galapagense. Th IUCN Red List of Theratened Species 2014

  • van Hengstum T, Lachmuth S, Oostermeijer JGB, den Nijs JCM, Meirmans PG, van Tienderen PH (2012) Human-induced hybridization among congeneric endemic plants on Tenerife, Canary Islands. Plant Syst Evol 298(6):1119–1131. https://doi.org/10.1007/s00606-012-0624-6

    Article  Google Scholar 

  • Vosters SL, Jewell CP, Sherman NA, Einterz F, Blackman BK, Moyle LC (2014) The timing of molecular and morphological changes underlying reproductive transitions in wild tomatoes (Solanum sect. Lycopersicon). Mol Ecol 23:1965–1978

    Article  CAS  Google Scholar 

  • Weber D (1971) Pinta, Galápagos: Une ile a sauver. Biol Cons 4:8–12

    Article  Google Scholar 

  • Wendel JF, Percy RG (1990) Allozyme diversity and introgression in the Galapagos Islands endemic Gossypium darwinii and its relationship to continental G. barbadense. Biochem Syst Ecol 18(7–8):517–528. https://doi.org/10.1016/0305-1978(90)90123-W

    Article  Google Scholar 

  • Wickham H et al (2019) Welcome to the tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686

  • Williamson M (1996) Biological invasions, 1st edn. Springer, Dordrecht

    Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol. https://doi.org/10.1046/j.1523-1739.2001.0150041039.x

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Galápagos Science Center staff on San Cristobal for logistic and permitting support and the Galápagos National Park for assistance locating and sampling endemic populations. Additional on-site field support was provided by Marcello Loyola and Genaro Garcia. Roger T. Chetelat provided helpful comments that greatly improved the manuscript. This work was supported by a United States National Science Foundation award (IOS 1127059) to LCM and the Indiana University Brackenridge award to MJSG. The authors declare no conflicts of interest. All field collections were made with appropriate permits and prior authorization by the Galápagos National Park and Ecuadorian Ministry of Environment. A previous version of this manuscript was posted to BioRXiv (https://doi.org/10.1101/814160).

Author information

Authors and Affiliations

Authors

Contributions

MJSG, MLT, and LCM planned the field expeditions. MJSG carried out the field work, phenotyping, and analysis. MJSG wrote the manuscript, with comments from MLT and LCM.

Corresponding author

Correspondence to Matthew J. S. Gibson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Supplementary material 2 (KMZ 10 kb)

Supplementary material 3 (MP4 15143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson, M.J.S., de Lourdes Torres, M. & Moyle, L.C. Local extirpation is pervasive among historical populations of Galápagos endemic tomatoes. Evol Ecol 34, 289–307 (2020). https://doi.org/10.1007/s10682-020-10035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10035-3

Keywords

Navigation