Skip to main content

Advertisement

Log in

Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: evidences from groundwater geochemistry

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Chemical weathering in a groundwater basin is a key to understanding global climate change for a long-term scale due to its association with carbon sequestration. The present study aims to characterize and to quantify silicate weathering rate (SWR), carbon dioxide consumption rate and carbonate weathering rate (CWR) in hard rock terrain aided by major ion chemistry. The proposed study area Shanmuganadhi is marked with superior rainfall, oscillating temperature and runoff with litho-units encompassing charnockite and hornblende–biotite gneiss. Groundwater samples (n = 60) were collected from diverse locations and analysed for major chemical constituents. Groundwater geochemistry seems to be influenced by geochemical reactions combining dissolution and precipitation of solids, cation exchange and adsorption along with minor contribution from anthropogenic activities. The SWR calculated for charnockite and hornblende–biotite gneiss was 3.07 tons km−2 year−1 and 5.12 tons km−2 year−1, respectively. The calculated CWR of charnockite and hornblende–biotite gneiss was 0.079 tons km−2 year−1 and 0.74 tons km−2 year−1, respectively. The calculated CO2 consumption rates via silicate weathering were 1.4 × 103 mol km−2 year−1 for charnockite and 5.8 × 103 mol km−2 year−1 for hornblende–biotite gneiss. Lithology, climate and relief were the key factors isolated to control weathering and CO2 consumption rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Aravinthasamy, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Anand, B. (2019). Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: implication on human health. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00452-X.

    Article  Google Scholar 

  • Arditto, P. (1983). Mineral-groundwater interactions and the formation of authigenic kaolinite within the southeastern intake beds of the Great Australian (Artesian) Basin, New South Wales, Australia. Sedimentary Geology, 35(4), 249–261. https://doi.org/10.1016/0037-0738(83)90061-1.

    Article  CAS  Google Scholar 

  • Ball, J. W., Nordstrom, D. K., & Zachmann, D. W. (1987). WATEQ4F–A personal computer FORTRAN translation of the geochemical model WATEQ2 with revised data base: U.S. Geological Survey Open-File Report, 87-50, 108. https://www.researchgate.net/publication/236246808.

  • Basavarajappa, H. T., & Manjunatha, M. C. (2015). Groundwater quality analysis in Precambrian rocks of Chitradurga district, Karnataka, India using Geo informatics technique. Aquatic Procedia, 4, 1354–1365. https://doi.org/10.1016/j.aqpro.2015.02.176.

    Article  Google Scholar 

  • Beaulieu, E., Godderis, Y., Donnadieu, Y., Labat, D., & Roelandt, C. (2012). High sensitivity of the continental-weathering carbon dioxide sinks to future climate change. Nature Climate Change, 2, 346–349. https://doi.org/10.1038/nClimate1419.

    Article  CAS  Google Scholar 

  • Berg, G. (1932). Das Vorkommen der chemischen Elementen auf der Erde (p. 204). Leipzig: Johan Ambrosius Barth.

    Google Scholar 

  • Berner, R. A. (1991). A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291, 339–376. https://doi.org/10.2475/ajs.291.4.339.

    Article  CAS  Google Scholar 

  • Berner, R. A., Lassaga, A. C., & Garrels, R. M. (1983). The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal Science, 284, 1183–1192. https://doi.org/10.2475/ajs.283.7.641.

    Article  Google Scholar 

  • BIS 5930. (1981). Code of practice for site investigations, British standard (Vol. 152). London: British Standards Institution.

    Google Scholar 

  • Blum, J. D., Gazis, C. A., Jacobson, A. D., & Chamberlain, C. P. (1998). Carbonate versus silicate weathering in Raikhot watershed within the High Himalayan crystalline series. Geology, 26, 411–414.

    Article  CAS  Google Scholar 

  • Böhlke, J. K., Smith, R. L., & Miller, D. N. (2006). Ammonium transport and reaction in contaminated groundwater: application of isotope tracers and isotope fractionation studies. Water Resources Research. https://doi.org/10.1029/2005WR004349.

    Article  Google Scholar 

  • Brookins, D. G. (1988). Eh-pH diagrams for geochemistry (pp. 116–117). Berlin: Springer. https://doi.org/10.1007/978-3-642-73093-147.

    Book  Google Scholar 

  • Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M. C., et al. (2011). Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303, 48–58. https://doi.org/10.1016/j.epsl.2010.12.032.

    Article  CAS  Google Scholar 

  • CGWB. (2008). Central Groundwater Board, Annual Report. South Eastern Coastal Region, Government of India.

  • Clayton, J. L. (1988). Some observations on the stoichiometry of feldspar hydrolysis in granitic soil. Journal Environmental Quality, 17, 153–157.

    Article  CAS  Google Scholar 

  • Corbett, R. G. (1979). Geology and water characteristics. In W. M. Edmunds & P. L. Smedley (Eds.), Geochemistry of water in cardiovascular disease (pp. 14–38)., Panel on the geochemistry of water in relation to cardiovascular diseases Washington, D.C.: National Academy of Sciences.

    Google Scholar 

  • Dalai, T. K., Krishnaswami, S., & Sarin, M. M. (2002). Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption rates. Geochimica et Cosmochimica Acta, 66(19), 3397–3416. https://doi.org/10.1016/S0016-7037(02)00937-7.

    Article  CAS  Google Scholar 

  • Das, B. K., & Kaur, P. (2001). Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Journal of Environmental Geology, 40, 908–917. https://doi.org/10.1007/s12665-019-8315-z.

    Article  CAS  Google Scholar 

  • Das, A., Krishnaswami, S., Sarin, M. M., & Pande, K. (2005). Chemical weathering in the Krishna basin and the western ghats of the Deccan Traps: Rates of weathering and their control. Geochimica et Cosmochimica Acta, 69, 2067–2084. https://doi.org/10.1016/j.gca.2004.10.014.

    Article  CAS  Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater regime. Journal of the Geological Society of India, 47(2), 179–188.

    CAS  Google Scholar 

  • Donnini, M., Frondini, F., Probst, J.-L., Probst, A., Cardellini, C., Marchesini, I., et al. (2016). Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Global and Planetary Change, 136, 65–81. https://doi.org/10.1016/j.gloplacha.2015.10.017.

    Article  Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters (2nd ed., p. 437). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Duraisamy, S., Govindhaswamy, V., Duraisamy, K., Krishnaraj, S., Balasubramanian, A., & Thirumalaisamy, S. (2018). Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environmental Geochemistry and Health, 41(2), 851–873. https://doi.org/10.1007/s10653-018-0183-z.

    Article  CAS  Google Scholar 

  • Elango, L., Kannan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Journal of Environmental Geoscience, 10, 157–166. https://doi.org/10.1306/eg100403011.

    Article  Google Scholar 

  • Fisher, S. R., & Mullican, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Dezert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5, 4–16. https://doi.org/10.1007/s100400050102.

    Article  Google Scholar 

  • Fuller, W. H. (1951). Soil organic matter. In R. L. Cook & B. G. Ellis (Eds.), Soil management: A world view of conservation and production (pp. 152–170). New York: Wiley.

    Google Scholar 

  • Gaillardet, J., Dupre, B., & Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5.

    Article  CAS  Google Scholar 

  • Galy, A., & France-Lanord, C. (1999). Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 31–60.

    Article  CAS  Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical compositions of some springs and lakes. In W. Stumm (Ed.), Equilibrium concepts in natural water systems. Advances in Chemistry Series (Vol 67, pp. 222–242).

  • Ghandour, E. I. M., Khalil, J. B., & Atta, S. A. (1985). Distribution of carbonates, bicarbonates and pH values in groundwater of the Nile delta region, Egypt. Groundwater, 23, 35–41. https://doi.org/10.1111/j.1745-6584.1985.tb02777.x.

    Article  Google Scholar 

  • Gislason, S. R., Arnorsson, S., & Armannsson, H. (1996). Chemical weathering of basalt in Southwest Iceland: Effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837–907. https://doi.org/10.2475/ajs.296.8.837.

    Article  CAS  Google Scholar 

  • Glover, E. T., Akiti, T. T., & Osae, S. (2012). Major ion chemistry and identification of geochemical processes of groundwater in the Accra Plains. Geoscience, 50, 10279–10288.

    Google Scholar 

  • Guilbert, P. A., & Dejoy, A. L. (1979). Phosphorus in the environment: Its chemistry and biochemistry. The Use of Phosphate Detergents and Possible Replacements for Phosphate, CIBA Foundation Symposium 57: Amsterdam. https://doi.org/10.1002/9780470720387.ch14.

  • Guo, S., Wang, J., Xiong, L., Ying, A., & Li, D. (2002). A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. Journal of Hydrology, 2002(268), 1–15. https://doi.org/10.1016/S0022-1694(02)00075-6.

    Article  Google Scholar 

  • Gurumurthy, G. P., Balakrishna, K., Riotte, J., Braun, J.-J., Audry, S., Shankar, H. N. U., et al. (2012). Controls on intense silicate weathering in a tropical river, southwestern India. Chemical Geology, 300–301, 61–69. https://doi.org/10.1016/j.chemgeo.2012.01.016.

    Article  CAS  Google Scholar 

  • Hargreaves, G. H., & Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering, 129, 53–63. https://doi.org/10.1061/(ASCE)b0733-9437(2003)129:1(53).

    Article  Google Scholar 

  • Hartmann, J., & Kempe, S. (2008). What is the maximum potential for CO2 sequestration by stimulated weathering on the global scale. Naturwissenschaften, 95, 1159–1164. https://doi.org/10.1007/s00114-008-0434-4.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water (3rd ed., Vol. 2254). Reston: US Geological Survey, Water Supply.

    Google Scholar 

  • Hounslow, A. W. (1995). Water quality data: Analysis and interpretation (Vol. 416). Boca Raton: CRC Press LLC, Lewis Publishers. https://doi.org/10.1201/9780203734117.

    Book  Google Scholar 

  • Huang, S.-b., Han, Z.-t., Zhao, L., & Kong, X.-K. (2015). Risk assessment and prediction of heavy metal pollution in groundwater and river sediment: A case study of a typical agricultural irrigation area in Northeast China. International Journal of Analytical Chemistry. https://doi.org/10.1155/2015/921539.

    Article  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., Wu, J., & Srinivasamoorthy, K. (2019). Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin, South India. Human and Ecological Risk Assessment, 25(1–2), 250–270. https://doi.org/10.1080/10807039.2019.1568859.

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Vennila, G., Suresh, M., & Subramanian, S. K. (2013). Evaluation of the groundwater quality feasibility zones for irrigational purposes through GIS in Omalur Taluk, Salem District, South India. Environmental Science and Pollution Research, 20(10), 7320–7333. https://doi.org/10.1007/s11356-013-1746-2.

    Article  CAS  Google Scholar 

  • Katz, B. G., Bricker, O. P., & Kennedy, M. M. (1985). Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland. American Journal Science, 285, 931–962. https://doi.org/10.2475/ajs.285.10.931.

    Article  CAS  Google Scholar 

  • Kenoyer, G. J., & Bowser, C. J. (1992). Groundwater chemical evolution in a sandy silicate aquifer in northern Wisconsin: 1. Patterns and rates of change. Water Resources Research, 28(2), 579–589. https://doi.org/10.1029/91WR02302.

    Article  CAS  Google Scholar 

  • Krishnan, A. S., Smith, S. D., & Spontak, R. J. (2012). Ternary phase behavior of a triblock copolymer in the presence of an endblock-selective homopolymer and midblock-selective oil. American Chemical Society, 45(15), 6056–6067. https://doi.org/10.1021/ma300417u.

    Article  CAS  Google Scholar 

  • Krishnaswami, S., & Singh, S. K. (2005). Chemical weathering in the river basins of the Himalaya, India. Current Science, 89(5), 841–884.

    CAS  Google Scholar 

  • Krishnaswami, S., Singh S. K., & Dalai T. K. (1999). Silicate weathering in the Himalaya: Role in contributing to major ions and radiogenic Sr to the Bay of Bengal. In B. L. K. Somayajulu (Ed.), Ocean science, trends and future directions (pp. 23–51). Indian National Science Academy and Akademia International.

  • Lakshmanan, E., Kannan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10, 157–166. https://doi.org/10.1306/eg100403011.

    Article  Google Scholar 

  • Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M., et al. (2001). Future climate change: Implications for Indian summer monsoon and its variability’. Current Science, 81, 1196–1207.

    Google Scholar 

  • Lerman, A., Lingling, W., & Fred, M. T. (2007). CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106, 326–350. https://doi.org/10.1016/j.marchem.2006.04.004.

    Article  CAS  Google Scholar 

  • Lingling, W., Youngdook, H., Janhua, Q., Gu, D., & Der Lee, S. (2005). Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochimica et Cosmochimica Acta, 69(22), 5279–5294. https://doi.org/10.1016/j.gca.2005.07.001.

    Article  CAS  Google Scholar 

  • Liu, Z. J., Liu, Y. S., & Li, Y. R. (2018). Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China. Ecological Indicators, 95, 370–378. https://doi.org/10.1016/j.ecolind.2018.07.063.

    Article  Google Scholar 

  • Lyu, X., Tao, Z., Gao, Q., Peng, H., & Zhou, M. (2009). Chemical weathering and riverine carbonate system driven by human activities in a subtropical Karst Basin, South China. Water, 10, 1524. https://doi.org/10.3390/w10111524.

    Article  CAS  Google Scholar 

  • Macpherson, G. L., Roberts, J. A., Blair, J. M., Townsend, M. A., Fowle, D. A., & Beisner, K. R. (2008). Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA. Geochemica et Cosmochemica Acta, 72, 5581–5599. https://doi.org/10.1016/j.gca.2008.09.004.

    Article  CAS  Google Scholar 

  • Maher, K., & Chamberlain, C. P. (2014). Hydrologic regulation of chemical weathering and the geologic carbon cycle. Sciences, 343(6178), 1502–1504. https://doi.org/10.1126/science.1250770.

    Article  CAS  Google Scholar 

  • Mattson, M. D. (2014). Alkalinity of fresh water. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.09397-0.

    Article  Google Scholar 

  • Nakagawa, K., Amano, H., Asakura, H., & Berndtsson, R. (2016). Spatial trends of nitrate pollution and groundwater chemistry in Shimabara, Nagasaki, Japan. Environmental Earth Sciences, 75(3), 1–17. https://doi.org/10.1007/s12665-015-4971-9.

    Article  CAS  Google Scholar 

  • Olobaniyi, S. B., Ogala, J. E., & Nfor, N. B. (2007). Hydrogeochemical and bacteriology investigation of groundwater in Agbor area, southern Nigeria. Journal of Mining and Geology, 43(1), 79–89. https://doi.org/10.4314/jmg.v43i1.18867.

    Article  Google Scholar 

  • Pacheco, F., & Van der Weijden, C. H. (1996). Contributions of water–rock interactions to the composition of groundwaters in areas with a sizeable anthropogenic input: a case study of the water of the Fundao area, central Portugal. Water Resources Research, 32(12), 3553–3570. https://doi.org/10.1029/96WR01683.

    Article  CAS  Google Scholar 

  • Pande, K., Sarin, M. M., Trivedi, J. R., Krishnaswami, S., & Sharma, K. K. (1994). The Indus river system (India-Pakistan): Major-ion chemistry, uranium and strontium isotopes. Chemical Geology, 116, 245–259.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., Plummer, L. N., & Thorstenson, D. C. (1982). BALANCE—A computer program for calculating mass transfer for geochemical reactions in ground water: U.S. Geological Survey Water-Resources Investigations 82-14, 29.

  • Parkhurst, D. L., Thorstenson, D.C., & Plummer, L.N. (1980). PHREEQE—A computer program for geochemical calculations: U.S. Geological Survey Water-Resources Investigations, 80-96, 193.

  • Pattanaik, J., Balakrishnan, S., Bhutani, R., & Singh, P. (2013). Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India. Geochimica et Cosmochimica Acta, 121, 611–636. https://doi.org/10.1016/j.gca.2013.08.002.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphical procedure in the geochemical interpretation of water analysis. Transactions, American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Plummer, L. N., Bexfield, L. M., Anderholm, S. K., Sanford, W. E., & Busenberg, E. (2004). Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow. Hydrogeol Journal, 12(4), 359–388. https://doi.org/10.1007/s10040-004-0324-6.

    Article  CAS  Google Scholar 

  • Rahman, M. A. T. M. T., Majumder, R. K., Rahman, S. H., & Halim, M. A. (2011). Sources of deep groundwater salinity in the south western zone of Bangladesh. Environmental Earth Sciences, 63, 363–373. https://doi.org/10.1007/s12665-010-0707-z.

    Article  CAS  Google Scholar 

  • Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late cenozoic climate. Nature, 359, 117–122. https://doi.org/10.1038/359117a0.

    Article  CAS  Google Scholar 

  • Ronald Frost, B., & Carol Frost, D. (2008). A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49, 11. https://doi.org/10.1093/petrology/egn/054.

    Article  Google Scholar 

  • Roy, S., Gaillardet, J., & Allegre, C. J. (1999). Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63(9), 1277–1292. https://doi.org/10.1016/S0016-7037(99)00099-X.

    Article  CAS  Google Scholar 

  • Safei, K., Arian, M.-A., & Mirhosseini, S. H. A. M. Z. (2015). Mineral chemistry and geothermometry of amphibole and plagioclase in the metabasites, located at the Tanbour Metamorphic Complex in Southern Iran. Earth and Environmental Sciences, 5(11), 795–808. https://doi.org/10.4236/ojg.2015.511068.

    Article  CAS  Google Scholar 

  • Saravanan, K., Srinivasamoorthy, K., Gopinath, S., Prakash, R., & Suma, C. S. (2016). Investigation of hydrogeochemical processes and groundwater quality in Upper Vellar sub-basin Tamilnadu, India. Arab Journal Geoscience, 9, 372. https://doi.org/10.1007/s/12517-016-2369-y.

    Article  Google Scholar 

  • Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga–Brahmaputra river system: Weathering processes and fluxes to the Bay of the Bengal. Geochimica et Cosmochimica Acta, 53(5), 997–1009. https://doi.org/10.1016/0016-7037(89)90205-6.

    Article  CAS  Google Scholar 

  • Singh, S. K., Trivedi, J. R., Pande, K., Ramesh, R., & Krishnaswami, S. (1998). Chemical and Sr, O, C isotopic composition of carbonates from the Lesser Himalaya: Implications to the Sr isotopic composition of the source waters of Ganga, Ghaghara and Indus Rivers. Geochimica et Cosmochimica Acta, 62, 743–755.

    Article  CAS  Google Scholar 

  • Soumya, B. S., Sekhar, M., Riotte, J. J., Audry, S., Lagane, C., & Braun, J. J. (2011). Inverse models to analyze the spatiotemporal variations of chemical weathering fluxes in a granito-gneissic watershed: Mule Hole, South India. Geoderma, 165(1), 12–24.

    Article  CAS  Google Scholar 

  • Srinivas, Y., Muthuraj, D., Hudson Oliver, D., Stanley Raj, A., & Chandrasekar, N. (2013). Environmental applications of Geophysical and Geochemical methods to map groundwater quality at Tuticorin, Tamilnadu, India. Journal of Environmental Earth Sciences, 70(5), 2143–2152.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavigar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—A case study from Mettur taluk, Salem district, Tamil Nadu, India. Journal of Earth System Science, 117(1), 49–59. https://doi.org/10.1007/s12040-008-0012-3.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarma, V. S. (2014). Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamil Nadu, India. Journal of King Saud University-Science, 26(1), 37–52. https://doi.org/10.1016/j.jksus.2013.08.001.

    Article  Google Scholar 

  • Srinivasamoorthy, K., Nanthakumar, C., Vasanthavigar, M., Vijayaraghavan, K., Rajivgandhi, R., ChidambaramS, Anandhan P., et al. (2009). Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu. India. Arabian Journal of Geosciences, 4(1), 91–102. https://doi.org/10.1007/s12517-009-0076-7.

    Article  CAS  Google Scholar 

  • Srinivasamoorthy, K., Vasanthavigar, M., Chidambaram, S., Anandhan, P., Manivannan, R., & Rajivgandhi, R. (2012). Hydrochemistry of groundwater from Sarabanga minor basin, Tamilnadu, India. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3), 193–203.

    CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1987). Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. Journal of Geophysical Research: Oceans, 92, 8293–8302. https://doi.org/10.1029/JC092iC08p08293.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: chemical equilibria and rates in natural waters (3rd ed.). New York: Wiley.

    Google Scholar 

  • Sugavanam, E. B., Venkata Rao, V., Simhachalam, J., Nagal, S. C., & Sinha, A. K. (1976). Multiphase basic and ultrabasic activity in granulite terrain of North Arcot District, Tamil Nadu. Journal of the Geological Society of India, 17, 159.

    Google Scholar 

  • Talabi, A. O. (2015). Weathering of meta-igneous rocks in parts of the basement Terrain of South western Nigeria: Implications on groundwater occurrence. International Journal of Scientific and Research, 5(4), 17.

    Google Scholar 

  • Thangamani, S., & Raviraj, A. (2016). Rainfall variability and trend detection in Dindigul district of Amaravathi Basin. Current World Environment, 11(2), 567–576. https://doi.org/10.12944/CWE.11.2.27.

    Article  Google Scholar 

  • Tipper, E. T., Lemarchand, E., Hindshaw, R. S., Reynolds, B. C., & Bourdon, B. (2012). Seasonal sensitivity of weathering processes: hints from magnesium isotopes in a glacial stream. Chemical Geology, 312–313, 80–92. https://doi.org/10.1016/j.chemgeo.2012.04.002.

    Article  CAS  Google Scholar 

  • Toth, J. (1999). Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeolology Journal, 7, 1–14. https://doi.org/10.1007/s100400050176.

    Article  Google Scholar 

  • Truesdell, A. H., & Jones, B. F. (1973). WATEQ: A computer program for caculating chemical equilibria of natural waters. U. S. Geological Survey, Report No. USGS-vlRD-73-007.

  • Vyshnavi, S., & Islam, R. (2015). Water–rock interaction on the development of granite gneissic weathered profiles in Garhwal Lesser Himalaya, India. Journal Earth System Science, 124, 945–963. https://doi.org/10.1007/s12040-015-0590-9.

    Article  CAS  Google Scholar 

  • Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981a). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86, 9776–9978.

    Article  CAS  Google Scholar 

  • Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981b). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research, 86(C10), 9776–9978.

    Article  CAS  Google Scholar 

  • Wang, A., Xia, T., Ru, R., Yuan, J., Chen, X., & Yang, K. (2004). Antagonistic effect of selenium on oxidative stress, DNA damage, and apoptosis induced by fluoride in human hepatocytes. Fluoride, 37(2), 107–116.

    Google Scholar 

  • Wu, H., Zhang, J., & Ngo, H. H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601. https://doi.org/10.1016/j.biortech.2014.10.06.

    Article  CAS  Google Scholar 

  • Yousef, A. F., Saleem, A. A., Baraka, A. M., & Aglan, O. (2009). The impact of geological setting on the groundwater occurrences in some Wadis in Shalatein–Abu-Ramad area, SE desert, Egypt. European Water, 25(26), 53–68.

    Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges support from Pondicherry University Research fellowship. The authors are grateful to two anonymous reviewers for their insightful comments on the manuscript, as the comments directed us to improve the work in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Srinivasamoorthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinnarasi, F., Srinivasamoorthy, K., Saravanan, K. et al. Chemical weathering and atmospheric carbon dioxide (CO2) consumption in Shanmuganadhi, South India: evidences from groundwater geochemistry. Environ Geochem Health 43, 771–790 (2021). https://doi.org/10.1007/s10653-020-00540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00540-3

Keywords

Navigation