Skip to main content

Advertisement

Log in

Heating a biodiversity hotspot: connectivity is more important than remaining habitat

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Connectivity, which is a fundamental aspect of any landscape, has been shown to have a nonlinear relationship with the amount of natural habitat, with a marked decrease at intermediate levels of coverage. Impacts on connectivity vary according to how natural habitat is removed. We analyzed connectivity in the Brazilian Cerrado (tropical savanna), a 2 million-km2 biodiversity hotspot.

Objectives

We evaluated the effects of habitat removal on connectivity, hypothesizing that a deforestation threshold exists below which connectivity is drastically reduced and that neighboring landscapes have similar patterns of connectivity.

Methods

We divided the Cerrado into 624 50 × 50 km cells and used the integral index of connectivity (IIC), available in Conefor software, to evaluate changes in connectivity between 2000 and 2017. We analyzed how the intra, flux, and connector components of connectivity vary with changes in percentage of remaining natural habitat.

Results

Between 2000 and 2017, 23.9% of the natural habitat of the Cerrado was lost (~ 254,000 km2) and connectivity decreased significantly (W = 179,700, p < 0.01). The most crucial change was the removal of connector fragments or corridors, which occurred in 78.2% of the landscapes. The relationship between IIC and remaining natural area revealed a breakpoint, when native area in a landscape reached 39% in 2000 and 37% in 2017.

Conclusions

Regardless of the spatial arrangement of habitat fragments, landscape connectivity is lost when the remaining natural habitat falls below a certain threshold. More restrictive regulations and government permissions should be considered to avoid over-occupation of landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Google Scholar 

  • Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon RL, Meave JA, Norden N, Santos BA, Leal IR, Tabarelli M (2015) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340

    PubMed  Google Scholar 

  • Azevedo-Santos VM, Fearnside PM, Oliveira CS, Padial AA, Pelicice FM, Lima Jr DP, Simberloff D, Lovejoy TE, Magalhães ALB, Orsi ML, Agostinho AA, Esteves FA, Pompeu PS, Laurance WF, Petrere Jr M, Mormul RP, Vitule JRS (2017) Removing the abyss between conservation science and policy decisions in Brazil. Biodivers Conserv 26:1745–1752

    Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Google Scholar 

  • Benson BJ, MacKenzie MD (1995) Effects of sensor spatial-resolution on landscape structure parameters. Landsc Ecol 10:113–120

    Google Scholar 

  • Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Modell 221:2393–2405

    Google Scholar 

  • Borges-Matos C, Aragón S, da Silva MNF, Fortin M-J, Magnusson WE (2016) Importance of the matrix in determining small-mammal assemblages in an Amazonian forest-savanna mosaic. Biol Conserv 204:417–425

    Google Scholar 

  • Boscolo D, Candia-Gallardo C, Awade M, Metzger JP (2008) Importance of interhabitat gaps and stepping-stones for Lesser Woodcreepers (Xiphorhynchus fuscus) in the Atlantic Forest, Brazil. Biotropica 40:273–276

    Google Scholar 

  • Brady MJ, McAlpine CA, Miller CJ, Possingham HP, Baxter GS (2009) Habitat attributes of landscape mosaics along a gradient of matrix development intensity: matrix management matters. Landsc Ecol 24:879–891

    Google Scholar 

  • Brannstrom C, Jepson W, Filippi AM, Redo D, Xu Z, Ganesh S (2008) Land change in the Brazilian Savanna (Cerrado), 1986–2002: comparative analysis and implications for land-use policy. Land Use Policy 25:579–595

    Google Scholar 

  • Brasil (2015) Ministério do Meio Ambiente. Mapeamento do Uso e Uso do cerrado: projeto TerraClass Cerrado 2013. http://www.dpi.inpe.br/tccerrado. Accessed 05 May 2018

  • Briske DD, Fuhlendorf SD, Smeins FE (2006) A unified framework for assessment and application of ecological thresholds. Rangel Ecol Manag 59:225–236

    Google Scholar 

  • Brito A, Valeriano DM, Ferri C, Scolastrici A, Sestini M (2018) Metodologia da detecção do desmatamento no bioma Cerrado—mapeamento de áreas antropizadas com imagens de média resolução especial. http://cerrado.obt.inpe.br. Accessed 10 Oct 2019

  • Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403

    Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545

    Google Scholar 

  • Crooks KR, Sanjayan M (2006) Connectivity conservation: maintaining connections for nature. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, New York, pp 1–20

    Google Scholar 

  • da Silva JMC, Rapini A, Barbosa LCF, Torres RR (2019) Extinction risk of narrowly distributed species of seed plants in Brazil due to habitat loss and climate change. PeerJ 7:e7333

    PubMed  PubMed Central  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Google Scholar 

  • Duncan RS, Chapman CA, Applications SE, Aug N (2014) Seed dispersal and potential forest succession in abandoned agriculture in Tropical Africa. Ecol Appl 9:998–1008

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Google Scholar 

  • Garcia FN, Ferreira LG, Leite JF (2011) Áreas protegidas no bioma Cerrado: fragmentos vegetacionais sob forte pressão. In: Annals XV Brazilian Symposium on Remote Sensing, Curitiba, Brazil, April 30 to May 5, pp 4086–4093

  • García-Feced C, Saura S, Elena-Rosselló R (2011) Improving landscape connectivity in forest districts: a two-stage process for prioritizing agricultural patches for reforestation. For Ecol Manage 261:154–161

    Google Scholar 

  • Giraudoux P (2019) Pgirmess. Data analysis in ecology. R package version 1.6.9. https://cran.r-project.org/web/packages/pgirmess/index.html. Accessed 25 Feb 2019

  • Goulart FF, Salles P, Saito CH, Machado RB (2013) How do different agricultural management strategies affect bird communities inhabiting a savanna-forest mosaic? A qualitative reasoning approach. Agric Ecosyst Environ 164:114–130

    Google Scholar 

  • Groom G, Mücher CA, Ihse M, Wrbka T (2006) Remote sensing in landscape ecology: experiences and perspectives in a European context. Landsc Ecol 21:391–408

    Google Scholar 

  • Hansbauer MM, Storch I, Leu S, Nieto-Holguin J-P, Pimentel R, Knauer F, Metzger JP (2008) Movements of neotropical understory passerines affected by anthropogenic forest edges in the Brazilian Atlantic rainforest. Biol Conserv 141:782–791

    Google Scholar 

  • Hay GJ, Marceau DJ, Dube P, Bouchard A (2001) A multiscale framework for landscape analysis: object-specific analysis and upscaling. Landsc Ecol 16:471–490

    Google Scholar 

  • IBGE (2004) Instituto Brasileiro de Geografia e Estatística. Mapa de Biomas do Brasil (Escala 1:5.000.000). https://www.ibge.gov.br/geociencias-novoportal/informacoes-ambientais/estudos-ambientais/15842-biomas. Accessed 27 March 2019

  • INPE (2018) Instituto Nacional de Pesquisas Espaciais. Projeto Prodes Cerrado: Mapeamento do desmatamento do Cerrado com imagens de satélite. http://www.dpi.inpe.br/fipcerrado/. Accessed 10 Sept 2018

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473

    PubMed  Google Scholar 

  • Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:1

    Google Scholar 

  • Laita A, Kotiaho JS, Mönkkönen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity? Landsc Ecol 26:951–967

    Google Scholar 

  • Martensen AC, Pimentel RG, Metzger JP (2008) Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: implications for conservation. Biol Conserv 141:2184–2192

    Google Scholar 

  • Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JP (2012) Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance: modulators of avifaunal composition. Conserv Biol 26:1100–1111

    PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  • McIntyre S, Hobbs R (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Google Scholar 

  • Metzger JP, Décamps H (1997) The structural connectivity threshold: a hypothesis in conservation biology at the landscape scale. Acta Oecol 18:1–12

    Google Scholar 

  • Minor ES, Urban DL (2008) A graph‐theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22:297–307. https://doi.org/10.1111/j.1523-1739.2007.00871.x

    Article  PubMed  Google Scholar 

  • Mönkkönen M, Reunanen P (1999) On critical thresholds in landscape connectivity: a management perspective. Oikos 84:302

    Google Scholar 

  • Newton AC, Hill RA, Echeverría C et al (2009) Remote sensing and the future of landscape ecology. Prog Phys Geogr 33:528–546

    Google Scholar 

  • Oliveira Filho JB, Metzger JP (2006) Thresholds in landscape structure for three common deforestation patterns in the Brazilian Amazon. Landsc Ecol 21:1061–1073

    Google Scholar 

  • Overbeck GE, Vélez-Martin E, Scarano FR, Lewinsohn TM, Fonseca CR, Meyer ST, Müller SC, Ceotto P, Dadalt L, Durigan G, Ganade G, Gossner MM, Luis Guadagnin D, Lorenzen K, Jacobi CM, Weisser W, De Patta Pillar V (2015) Conservation in Brazil needs to include non-forest ecosystems. Divers Distrib 21:1455–1460

    Google Scholar 

  • Pardini R, de Arruda Bueno A, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666

    PubMed  PubMed Central  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967

    Google Scholar 

  • Pellissier V, Mimet A, Fontaine C, Svenning JC, Denis Couvet (2017) Relative importance of the land-use composition and intensity for the bird community composition in anthropogenic landscapes. Ecol Evol. https://doi.org/10.1002/ece3.3534

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-García JM, Sebastián-González E, Alexander KL, Sánchez-Zapata JA, Botella F (2014) Effect of landscape configuration and habitat quality on the community structure of waterbirds using a man-made habitat. Eur J Wildl Res 60:875–883

    Google Scholar 

  • Projeto MapBiomas (2018) Coleção 2.3 da série anual de mapas de cobertura e uso de solo do Brasil. http://mapbiomas.org/pages/database/mapbiomas_collection. Accessed 05 May 2018

  • R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/. Accessed 06 Jan 2017

  • Radford JQ, Bennett AF (2004) Thresholds in landscape parameters: occurrence of the white-browed treecreeper Climacteris affinis in Victoria, Australia. Biol Conserv 117:375–391

    Google Scholar 

  • Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv 124:317–337

    Google Scholar 

  • Rocha GF, Ferreira LG, Ferreira NC, Ferreira ME (2011) Detecção de desmatamentos no bioma Cerrado entre 2002 e 2009: padrões, tendências e impactos. Rev Bras Cartogr 63:341–349

    Google Scholar 

  • Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA (2014) Conserving mobile species. Front Ecol Environ 12:395–402

    Google Scholar 

  • Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Indic 11:407–416

    Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Google Scholar 

  • Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography. https://doi.org/10.1111/j.1600-0587.2009.05760.x

    Article  Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139. https://doi.org/10.1016/j.envsoft.2008.05.005

    Article  Google Scholar 

  • Serra P, Pons X, Saurí D (2008) Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr 28:189–209

    Google Scholar 

  • Shanthala Devi BS, Murthy MSR, Debnath B, Jha CS (2013) Forest patch connectivity diagnostics and prioritization using graph theory. Ecol Modell 251:279–287

    Google Scholar 

  • Soares-Filho B, Rajao R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) Cracking Brazil’s forest code. Science 344:363–364

    CAS  PubMed  Google Scholar 

  • SPSS Inc. (2015) SPSS for Windows Release 23.0.0. SPSS Inc., Chicago

  • StatSoft Inc. (2011) STATISTICA (data analysis software system), version 10. http://www.statsoft.com

  • Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R, Latawiec AE, Oliveira Filho FJB, Scaramuzza CAM, Scarano FR, Soares-Filho B, Balmford A (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:99

    PubMed  Google Scholar 

  • Swenson JJ, Young BE, Beck S, Comer P, Córdova JH, Dyson J, Embert D, Encarnación F, Ferreira W, Franke I, Grossman D, Hernandez P, Herzog SK, Josse C, Navarro G, Pacheco V, Stein BA, Timaná M, Tovar A, Tovar C, Vargas J, Zambrana-Torrelio CM (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol 12:1–18

    PubMed  PubMed Central  Google Scholar 

  • Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP (2013) A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity: optimizing restoration based on landscape resilience. Restor Ecol 22:169–177

    Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571

    Google Scholar 

  • Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40:98–108

    Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Google Scholar 

  • Torbick NM, Qi J, Roloff GJ, Stevenson RJ (2006) Investigating impacts of land-use land cover change on wetlands in the Muskegon River Watershed, Michigan, USA. Wetlands 26:1103–1113

    Google Scholar 

  • Uezu A, Beyer DD, Metzger JP (2008) Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodivers Conserv 17:1907–1922

    Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218

    Google Scholar 

  • Vanderwal J, Falconi L, Januchowski S, Shoo L, Storlie C (2014) Package SDMTools—Species Distribution Modelling Tools: tools for processing data associated with species distribution modeling exercises. http://www.rforge.net/SDMTools/. Accessed 20 Jan 2019

  • Vespa NI, Zurita G, Isabel Bellocq M (2014) Functional responses to edge effects: seed dispersal in the southern Atlantic forest, Argentina. For Ecol Manag 328:310–318

    Google Scholar 

  • Vieira RRS, Ribeiro BR, Resende FM et al (2017) Compliance to Brazil’s forest code will not protect biodiversity and ecosystem services. Divers Distrib 24:434–438

    Google Scholar 

  • Villard M-A, Metzger JP (2014) Review: beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318

    Google Scholar 

  • With KA, King AW (1999) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326

    Google Scholar 

  • Zimbres B, Peres CA, Machado RB (2017) Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. Biol Conserv 206:283–292

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordination of Improvement of Higher Education Personnel—Brazil (CAPES)—Finance Code 001. We also thank the National Council for Scientific and Technological Development—CNPq for providing research grants to RBM (process #306838/2016-8) and LMSA (process # 309299/2016-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thallita O. Grande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grande, T.O., Aguiar, L.M.S. & Machado, R.B. Heating a biodiversity hotspot: connectivity is more important than remaining habitat. Landscape Ecol 35, 639–657 (2020). https://doi.org/10.1007/s10980-020-00968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-00968-z

Keywords

Navigation