Skip to main content

Advertisement

Log in

On the feasibility of cropland and forest area expansions required to achieve long-term temperature targets

  • Original Article
  • Published:
Sustainability Science Aims and scope Submit manuscript

Abstract

Biomass-based negative emission technologies (NETs) such as bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation (AR) are regarded as important options to achieve the 2 °C and 1.5 °C targets stipulated in the Paris agreement, but the feasibility of their large-scale deployments remains very uncertain. This study focused on the speed of expansions of land-use area related to the biomass-based NETs and assessed the feasibility of climate change mitigation scenarios to achieve the temperature targets. Our model analysis shows that expansions at unprecedented speeds are required for total cropland area (including energy cropland) in Sub-Saharan Africa and for planted forest area for carbon sink in many regions in the next decades, under the assumption of global least-cost measures for CO2 emission reduction. On the other hand, when the speed of the land-use expansions is limited as observed in the real world, the CO2 emission reduction costs become unrealistically high around the middle of this century, particularly in scenarios for the 1.5 °C target; relatively low-cost measures such as BECCS in Sub-Saharan Africa and AR in many regions are limited in deployment due to the limited speed of the land-use expansion, and yet energy systems must be transformed to nearly net-zero/negative CO2 emissions for the 2 °C/1.5 °C target, which necessitates using other mitigation technologies of much higher costs. These results may cause concern over the feasibility of achieving the temperature targets, especially for the 1.5 °C target, and point to technical and scenario design aspects that will need further research for biomass-based NETs and their allowable expansion speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. 0.05% was assumed referring to the mode value of the ratio of increased planted forest area to the total forest area in 2000 for the 54 regions of the DNE21+ model.

  2. The area of “other cropland (including surplus and abandoned croplands)” around in the year 2000 was estimated by using the following formula: Area 1 – Min (Area 1, Area 2), where the numerical values of Area 1 and Area 2 were obtained from “Arable land and permanent crops” and “Area harvested” of the FAO’s database (2011), respectively.

References

  • Akimoto K, Sano F, Homma T, Oda J, Nagashima M, Kii M (2010) Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy 38:3384–3393. https://doi.org/10.1016/j.enpol.2010.02.012

    Article  CAS  Google Scholar 

  • Akimoto K, Tomoda T, Tahara K, Kojima T (2011) GIS-based estimation of global carbon sequestration potential due to forest management. J Chem Eng Jpn 44:764–773

    Article  CAS  Google Scholar 

  • Akimoto K, Sano F, Homma T, Tokushige K, Nagashima M, Tomoda T (2014) Assessment of the emission reduction target of halving CO2 emissions by 2050: macro-factors analysis and model analysis under newly developed socio-economic scenarios. Energy Strateg Rev 2:246–256. https://doi.org/10.1016/j.esr.2013.06.002

    Article  Google Scholar 

  • Akimoto K, Sano F, Tomoda T (2018) GHG emission pathways until 2300 for the 1.5 °C temperature rise target and the mitigation costs achieving the pathways. Mitig Adapt Strateg Global Change 23–6:839–852. https://doi.org/10.1007/s11027-017-9762-z

    Article  Google Scholar 

  • Akimoto K, Sano F, Tehrani BS (2017) The analyses on the economic costs for achieving the nationally determined contributions and the expected global emission pathways. Evol Inst Econ Rev 14–1:193–206

    Article  Google Scholar 

  • Alexandrov G, Yamagata Y (2004) Verification of carbon sink assessment: can we exclude natural sinks? Clim Change 67:437–447. https://doi.org/10.1007/s10584-004-2801-2

    Article  CAS  Google Scholar 

  • Bauer N, Rose SK, Fujimori S, van Vuuren DP, Weyant J, Wise M, Cui Y, Daioglou V, Gidden MJ, Kato E, Kitous A, Leblanc F, Sands R, Sano F, Strefler J, Tsutsui J, Bibas R, Fricko O, Hasegawa T, Klein D, Kurosawa A, Mima S, Muratori M (2018) Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim Change. https://doi.org/10.1007/s10584-018-2226-y

    Article  Google Scholar 

  • de Coninck H, Revi A et al (2018) Strengthening and implementing the global response, In: Masson-Delmotte V et al (ed) Global warming of 1.5 °C, pp 313–443

  • Doelman JC, Stehfest E, Tabeau A, van Meijl H, Lassaletta L, Gernaat DEHJ, Hermans K, Harmsen M, Daioglou V, Biemans H, van der Sluis S, van Vuuren DP (2018) Exploring SSP land-use dynamics using the IMAGE model: regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environ Change 48:119–135. https://doi.org/10.1016/j.gloenvcha.2017.11.014

    Article  Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y et al (2014) Technical Summary. In: Edenhofer O, et al. (eds) Climate change 2014: mitigation of climate change. Cambridge University Press, Cambridge, pp 33–107

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2019) Country data. https://www.fao.org/faostat/en/#data/RL. Accessed 18 July 2019

  • FAO (Food and Agriculture Organization of the United Nations) (2010) Global forest resources assessment 2010 (FRA 2010). https://www.fao.org/forest-resources-assessment/past-assessments/fra-2010/en/. Accessed 10 Jan 2015

  • FAO (Food and Agriculture Organization of the United Nations) (2011) Country data. https://www.fao.org/faostat/en/#data. Accessed 10 Oct 2011

  • Fischer G, van Velthuizen H, Shah M, Nachtergaele F (2002) Global agro-ecological assessment for agriculture in the 21st century. https://webarchive.iiasa.ac.at/Research/LUC/SAEZ/pdf/gaez2002.pdf. Accessed 10 May 2017

  • Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). https://webarchive.iiasa.ac.at/Research/LUC/External-Worldsoil-database/HTML/LandUseShares.html?sb=9. Accessed 4 July 2014

  • Frank S, Beach R, Havlík P, Valin H, Herrero M, Mosnier A, Hasegawa T, Creason J, Ragnauth S, Obersteiner M (2018) Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat Commun 9:1060. https://doi.org/10.1038/s41467-018-03489-1

    Article  CAS  Google Scholar 

  • Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N, Quere CL, Raupach MR, Sharifi A, Smith P, Yamagata Y (2014) Betting on negative emissions. Nat Clim Change 4:850–853

    Article  CAS  Google Scholar 

  • Hasumi H, Emori S (2004) K-1 coupled GCM (MIROC) description. https://ccsr.aori.u-tokyo.ac.jp/~hasumi/miroc_description.pdf. Accessed 11 May 2018

  • Hayashi A, Akimoto K, Sano F, Mori S, Tomoda T (2010) Evaluation of global warming impacts for different levels of stabilization as a step toward determination of the long-term stabilization target. Clim Change 98:87–112. https://doi.org/10.1007/s10584-009-9663-6

    Article  CAS  Google Scholar 

  • Hayashi A, Akimoto K, Tomoda T, Kii M (2013) Global evaluation of the effects of agriculture and water management adaptations on the water-stressed population. Mitig Adapt Strateg Global Change 18–5:591–618. https://doi.org/10.1007/s11027-012-9377-3

    Article  Google Scholar 

  • Hayashi A, Akimoto K, Sano F, Tomoda T (2015) Evaluation of global energy crop production potential up to 2100 under socioeconomic development and climate change scenarios. J Jpn Inst Energy 94–6:548–554. https://doi.org/10.3775/jie.94.548

    Article  Google Scholar 

  • Lauri P, Forsell N, Korosuo A, Havlík P, Obersteiner M, Nordin A (2017) Impacts of the 2 °C target on global woody biomass use. For Policy Econom 83:121–130. https://doi.org/10.1016/j.forpol.2017.07.005

    Article  Google Scholar 

  • Meehl GA, Stocker TF et al (2007) Global climate projection. In: Solomon S, et al. (eds) Climatic change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Meinshausen M, Raper SCB, Wigley TML (2011) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 part 1: model description and calibration. Atmos Chem Phys 11:1417–1456. https://doi.org/10.5194/acp-11-1417-2011

    Article  CAS  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Emissions scenarios. Cambridge University Press, Cambridge, p 570

    Google Scholar 

  • O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ Change 42:169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

  • PBL (2011) History database of the global environment. https://themasites.pbl.nl/tridion/en/themasites/hyde/download/index-2.html. Accessed 15 March 2017

  • PCMDI (2004) WCRP CMIP3 multi-model database. https://www-pcmdi.llnl.gov/ipcc/about_ipcc.php. Accessed 7 May 2010

  • Popp A, Rose SK, Calvin K, van Vuuren DP, Phillip Dietrich JP, Wise M, Stehfest E, Humpenöder F, Kyle P, van Vliet J, Bauer N, Lotze-Campen H, Klein D, Kriegler E (2014) Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim Change 123:495–509

    Article  Google Scholar 

  • Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, Bodirsky BL, Dietrich JP, Doelmann JC, Gusti M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Weindl I, Wise M, Kriegler E, Lotze-Campen H, Fricko O, Riahi K, van Vuuren DP (2017) Land-use futures in the shared socio-economic pathways. Global Environ Change 42:331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002

    Article  Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Change 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • RITE (2011) The report of project for alternative pathways toward sustainable development and climate stabilization, ‘the project ALPS’ in FY 2011 (in Japanese)

  • RITE (2015) RITE GHG mitigation assessment model DNE21+. https://www.rite.or.jp/system/global-warming-ouyou/download-data/RITE_GHGMitigationAssessmentModel_20150130.pdf. Accessed 3 Feb 2019

  • Rogelj J, Luderer G, Pietzcker RC, Kriegler E, Schaeffer M, Krey V, Riahi K (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat Clim Change 5:519–527. https://doi.org/10.1038/nclimate2572

    Article  Google Scholar 

  • Rose SK, Kriegler E, Bibas R, Calvin K, Popp A, van Vuuren DP, Weyant J (2014) Bioenergy in energy transformation and climate management. Clim Change 123:477–493. https://doi.org/10.1007/s10584-013-0965-3

    Article  Google Scholar 

  • Sano F, Akimoto K, Wada K, Nagashima M (2013) Analysis of CCS diffusion for CO2 emission reduction considering technology diffusion barriers in the real world. Energy Proc 37:7582–7589

    Article  CAS  Google Scholar 

  • Smith P, Bustamante M et al (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, et al. (eds) Climate change 2014: mitigation of climate change. Cambridge University Press, Cambridge, pp 811–886

    Google Scholar 

  • Smith P, Davis SJ, Creutzig F, Fuss S, Minx J, Gabrielle B, Kato E, Jackson RB, Cowie A, Kriegler E, van Vuuren DP, Rogelj J, Ciais P, Milne J, Canadell JG, McCollum D, Peters G, Andrew R, Krey V, Shrestha G, Friedlingstein P, Gasser T, Grübler A, Heidug WK, Jonas M, Jones CD, Kraxner F, Littleton E, Lowe J, Moreira JR, Nakicenovic N, Obersteiner M, Patwardhan A, Rogner M, Rubin E, Sharifi A, Torvanger A, Yamagata Y, Edmonds J, Yongsung C (2016) Biophysical and economic limits to negative CO2 emissions. Nat Clim Change 6:42–50. https://doi.org/10.1038/NCLIMATE2870

    Article  CAS  Google Scholar 

  • Turner PA, Field CB, Lobell DB, Sanchez DL, Mach KJ (2018) Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat Sustain 1:240–245

    Article  Google Scholar 

  • United Nations (2015) The Paris agreement. https://unfccc.int/paris_agreement/items/9485.php. Accessed 26 June 2013

  • van Vuuren DP, Elke S, David EHJG, van den Maarten B, David LB, de Harmen S, B, Vassilis D, Jonathan CD, Oreane YE, Mathijs H, Andries FH, Mariësse AE van S. (2018) Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat Clim Change 8:391–397

    Article  Google Scholar 

  • Vaughan NE, Gough C, Mander S, Littleton EW, Welfle A, Gernaat DEHJ, van Vuuren DP (2018) Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ Res Lett 13:044014. https://doi.org/10.1088/1748-9326/aaaa02

    Article  CAS  Google Scholar 

  • Yamagata Y, Hanasaki N, Ito A, Kinoshita T, Murakami D, Zhou Q (2018) Estimating water-food-ecosystem trade-offs for the global negative emission scenario (IPCC-RCP2.6). Sustain Sci 13–2:301–313. https://doi.org/10.1007/s11625-017-0522-5

    Article  Google Scholar 

  • Yamamoto H, Yamaji K, Fujino J (1999) Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique. Appl Energy 63:101–113. https://doi.org/10.1016/S0306-2619(99)00020-3

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted as part of the ALPS (alternative pathways towards sustainable development and climate stabilization) III project, and was supported by the Ministry of Economy, Trade and Industry, Japan. The authors express their sincere gratitude to Prof. Kenji Yamaji and Dr. Toshimasa Tomoda in RITE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayami Hayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handled by Shizuka Hashimoto, University of Tokyo, Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, A., Sano, F. & Akimoto, K. On the feasibility of cropland and forest area expansions required to achieve long-term temperature targets. Sustain Sci 15, 817–834 (2020). https://doi.org/10.1007/s11625-020-00791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-020-00791-0

Keywords

Navigation