Skip to main content

Advertisement

Log in

Analysis of influence of nonlinearities and noise correlation time in a single-DOF energy-harvesting system via power balance description

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We discuss the role played by the time correlation properties of stochastic sources and by model nonlinearities in single-degree of freedom energy-harvesting systems. After transforming the state equations into energy-angle coordinates, we apply a stochastic projection operator technique to obtain the system power balance equation. The latter allows to evaluate both the magnitude of the power injected by noise into the system and the harvested power, thus providing a tool instrumental for designers to optimize the harvester. We show that for systems with modulated (multiplicative) noise, nonlinear energy harvesters can outperform their linear counterparts, highlighting the physical mechanism that explains their better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Without loss of generality, we shall assume \(D=1\). Different values of D can be taken into account by rescaling the noise intensity according to \({{\tilde{\varepsilon }}}_n= \varepsilon _n D = \varepsilon _n {{\overline{D}}} \tau \). Therefore, by varying the parameter \(\varepsilon _n\) we can investigate the influence of both the noise diffusion coefficient \({{\overline{D}}}\) and the noise correlation time \(\tau \).

  2. The corresponding phase portrait is known as isochronous center.

  3. Analytical formulas in terms of complete elliptic integrals and elliptic modulus for these integral functions are given in the appendix.

References

  1. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007). https://doi.org/10.1126/science.1143254

    Article  MathSciNet  Google Scholar 

  2. Cannon, B.L., Hoburg, J.F., Stancil, D.D., Goldstein, S.C.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24(7), 1819–1825 (2009). https://doi.org/10.1109/tpel.2009.2017195

    Article  Google Scholar 

  3. Sample, A.P., Meyer, D.A., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011). https://doi.org/10.1109/tie.2010.2046002

    Article  Google Scholar 

  4. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175–R195 (2006). https://doi.org/10.1088/0957-0233/17/12/r01

    Article  Google Scholar 

  5. Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., Green, T.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008). https://doi.org/10.1109/jproc.2008.927494

    Article  Google Scholar 

  6. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015). https://doi.org/10.1109/comst.2014.2368999

    Article  Google Scholar 

  7. Roundy, S., Wright, P.K., Rabaey, J.M.: Energy Scavenging for Wireless Sensor Networks. Springer, New York (2004). https://doi.org/10.1007/978-1-4615-0485-6

    Book  Google Scholar 

  8. Paradiso, J., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput. 4(1), 18–27 (2005). https://doi.org/10.1109/mprv.2005.9

    Article  Google Scholar 

  9. Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., Lang, J.: Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9(1), 64–76 (2001). https://doi.org/10.1109/92.920820

    Article  Google Scholar 

  10. Mitcheson, P., Green, T., Yeatman, E., Holmes, A.: Architectures for vibration-driven micropower generators. J. Microelectromech. Syst. 13(3), 429–440 (2004). https://doi.org/10.1109/jmems.2004.830151

    Article  Google Scholar 

  11. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), R1–R21 (2007). https://doi.org/10.1088/0964-1726/16/3/r01

    Article  Google Scholar 

  12. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 8 (2009). https://doi.org/10.1103/physrevlett.102.080601

    Article  Google Scholar 

  13. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94(16), 164102 (2009). https://doi.org/10.1063/1.3120279

    Article  Google Scholar 

  14. Mann, B., Sims, N.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1–2), 515–530 (2009). https://doi.org/10.1016/j.jsv.2008.06.011

    Article  Google Scholar 

  15. Gammaitoni, L., Neri, I., Vocca, H.: The benefits of noise and nonlinearity: extracting energy from random vibrations. Chem. Phys. 375(2), 435–438 (2010). https://doi.org/10.1016/j.chemphys.2010.08.012

    Article  Google Scholar 

  16. Daqaq, M.F.: Response of uni-modal Duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–3631 (2010). https://doi.org/10.1016/j.jsv.2010.04.002

    Article  Google Scholar 

  17. Neri, I., Travasso, F., Vocca, H., Gammaitoni, L.: Nonlinear noise harvesters for nanosensors. Nano Commun. Netw. 2(4), 230–234 (2011). https://doi.org/10.1016/j.nancom.2011.09.001

    Article  Google Scholar 

  18. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono-and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011). https://doi.org/10.1016/j.jsv.2011.07.031

    Article  Google Scholar 

  19. Gammaitoni, L.: There’s plenty of energy at the bottom (micro and nano scale nonlinear noise harvesting). Contemp. Phys. 53(2), 119–135 (2012). https://doi.org/10.1080/00107514.2011.647793

    Article  Google Scholar 

  20. Bonnin, M., Corinto, F.: Phase noise and noise induced frequency shift in stochastic nonlinear oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 60(8), 2104–2115 (2013). https://doi.org/10.1109/TCSI.2013.2239131

    Article  MathSciNet  Google Scholar 

  21. Bonnin, M.: Amplitude and phase dynamics of noisy oscillators. Int. J. Circuit Theory Appl. 45(5), 636–659 (2016). https://doi.org/10.1002/cta.2246

    Article  Google Scholar 

  22. Bonnin, M., Traversa, F.L., Bonani, F.: Influence of amplitude fluctuations on the noise-induced frequency shift of noisy oscillators. IEEE Trans. Circuits Syst. II Express Briefs 63(7), 698–702 (2016). https://doi.org/10.1109/tcsii.2016.2532098

    Article  Google Scholar 

  23. Antoniadis, I., Venetsanos, D., Papaspyridis, F.: Dynamic non-linear energy absorbers based on properly stretched in-plane elastomer structures. Nonlinear Dyn. 75(1–2), 367–386 (2014). https://doi.org/10.1007/s11071-013-1072-8

    Article  Google Scholar 

  24. Zhou, S., Cao, J., Lin, J.: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86(3), 1599–1611 (2016). https://doi.org/10.1007/s11071-016-2979-7

    Article  Google Scholar 

  25. Serdukova, L., Kuske, R., Yurchenko, D.: Stability and bifurcation analysis of the period-T motion of a vibroimpact energy harvester. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05289-8

    Article  MATH  Google Scholar 

  26. Baratta, A., Zuccaro, G.: Analysis of nonlinear oscillators under stochastic excitation by the Fokker–Planck–Kolmogorov equation. Nonlinear Dyn. 5(3), 255–271 (1994). https://doi.org/10.1007/BF00045336

    Article  Google Scholar 

  27. Guo, S.S.: Nonstationary solutions of nonlinear dynamical systems excited by Gaussian white noise. Nonlinear Dyn. 92(2), 613–626 (2018). https://doi.org/10.1007/s11071-018-4078-4

    Article  Google Scholar 

  28. Meimaris, A.T., Kougioumtzoglou, I.A., Pantelous, A.A., Pirrotta, A.: An approximate technique for determining in closed form the response transition probability density function of diverse nonlinear/hysteretic oscillators. Nonlinear Dyn. 97(4), 2627–2641 (2019). https://doi.org/10.1007/s11071-019-05152-w

    Article  MATH  Google Scholar 

  29. Zhu, W., Huang, Z., Suzuki, Y.: Response and stability of strongly non-linear oscillators under wide-band random excitation. Int. J. Non Linear Mech. 36(8), 1235–1250 (2001). https://doi.org/10.1016/S0020-7462(00)00093-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, M., Jin, X., Wang, Y., Huang, Z.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78(2), 1451–1459 (2014). https://doi.org/10.1007/s11071-014-1527-6

    Article  MathSciNet  Google Scholar 

  31. Xiao, S., Jin, Y.: Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dyn. 90(3), 2069–2082 (2017). https://doi.org/10.1007/s11071-017-3784-7

    Article  Google Scholar 

  32. Zhang, Y., Jin, Y.: Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dyn. 98(1), 501–515 (2019). https://doi.org/10.1007/s11071-019-05208-x

    Article  Google Scholar 

  33. Makarem, H., Pishkenari, H.N., Vossoughi, G.: A modified Gaussian moment closure method for nonlinear stochastic differential equations. Nonlinear Dyn. 89(4), 2609–2620 (2017). https://doi.org/10.1007/s11071-017-3608-9

    Article  MathSciNet  Google Scholar 

  34. Makarem, H., Pishkenari, H., Vossoughi, G.: A quasi-Gaussian approximation method for the Duffing oscillator with colored additive random excitation. Nonlinear Dyn. 96(2), 825–835 (2019). https://doi.org/10.1007/s11071-019-04824-x

    Article  Google Scholar 

  35. Gardiner, C.W., et al.: Handbook of Stochastic Methods, vol. 3. Springer, Berlin (1985)

    Google Scholar 

  36. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    Book  Google Scholar 

  37. Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55 (2004). https://doi.org/10.1088/0951-7715/17/6/R01

    Article  MathSciNet  MATH  Google Scholar 

  38. Pavliotis, G., Stuart, A.: Multiscale Methods: Averaging and Homogenization. Springer, Berlin (2008)

    MATH  Google Scholar 

  39. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. AAPT, Maryland (2002)

    MATH  Google Scholar 

  40. Khasminskij, R.: On the principle of averaging the Ito’s stochastic differential equations. Kybernetika 4(3), 260–279 (1968)

    MathSciNet  Google Scholar 

  41. Zhang, Y., Jin, Y., Xu, P., Xiao, S.: Stochastic bifurcations in a nonlinear tristable energy harvester under colored noise. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4702-3

    Article  Google Scholar 

  42. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation, North Chelmsford (1965)

    MATH  Google Scholar 

  43. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists, vol. 67. Springer, Berlin (2013)

    Google Scholar 

  44. Shi-Dong, W., Ji-Bin, L.: Fourier series of rational fractions of Jacobian elliptic functions. Appl. Math. Mech. 9(6), 541–556 (1988). https://doi.org/10.1007/BF02465410

    Article  MathSciNet  Google Scholar 

  45. Savov, V., Georgiev, Z.D., Todorov, T.: Analysis and synthesis of perturbed Duffing oscillators. Int. J. Circuit Theory Appl. 34(3), 281–306 (2006). https://doi.org/10.1002/cta.351

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bonnin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Solution of the nonlinear oscillator

In the absence of noise and for the potential \(V(x) = a x^2/2 + b x^4/4\) Eq. (2) becomes

$$\begin{aligned} \dot{x} =&y \\ \dot{y} =&- a x - b x^3 \end{aligned}$$

Dividing one equation by the other, separating variables and integrating one finds

$$\begin{aligned} \dfrac{y^2}{2} + a \dfrac{x^2}{2} + b \dfrac{x^4}{4} = H_0 \end{aligned}$$

where \(H_0\) is a constant representing the energy. Solving with respect to y and considering only the positive determination yields

$$\begin{aligned} y = \sqrt{4H_0 - 2a x^2 - b x^4} \end{aligned}$$

Substituting in \(\dot{x} = y\) and separating variables gives the first-order differential equation

$$\begin{aligned} \dfrac{\text {d}x}{\sqrt{4H_0 - 2a x^2 - b x^4}} = \text {d}t \end{aligned}$$

Integrating both sides, it turns out that x(t) is in fact given by [43]

$$\begin{aligned} x(t) = \left( \dfrac{4E^2}{a^2+ 4 b E}\right) ^{1/4} \text {sd}[(a^2+4bE)^{1/4}t,k] \end{aligned}$$

where \(E=4H_0\) represents the energy level. Differentiating with respect to time

$$\begin{aligned} y(t)= & {} \sqrt{2E} \, \text {cd}[(a^2+4bE)^{1/4}t,k] \, \\&\text {nd}[(a^2+4bE)^{1/4}t,k] \end{aligned}$$

Appendix B: Integral functions \(I_n\)

The well-known relationships between the squares of Jacobi elliptic functions

$$\begin{aligned} k^2 \, \text {sd}^2 u =&\text {nd}^2 u - 1\\ k^2 \, \text {cd}^2 u =&1 - k'^2 \text {nd}^2 u \end{aligned}$$

imply that (42) can be reduced to the solution of the integrals

$$\begin{aligned} I_n = \int _0^{4{\mathcal {K}}(E)} \text {nd}^n u \, \text {d}u \end{aligned}$$

For \(n=2,4\) the integrals are easily computed with the help of the Fourier series for \(\text {nd}^2 u\) and \(\text {nd}^4 u\) [44], obtaining

$$\begin{aligned} I_2 =&\int _0^{4 {\mathcal {K}}(E)} \text {nd}^2 u \, \text {d}u = \dfrac{4{\mathcal {E}}(k)}{k'^2}\\ I_4 =&\int _0^{4 {\mathcal {K}}(E)} \text {nd}^4 u \, \text {d}u = \dfrac{8(2-k^2){\mathcal {E}} - 4 (1-k^2){\mathcal {K}}}{3k'^4} \end{aligned}$$

where \({\mathcal {E}}(k)\) is the complete elliptic integral of the second kind.

For larger values of n, integrals \(I_n\) can be computed using a recursive relation. Following the procedure described in [45] we find

$$\begin{aligned}&\dfrac{\text {d}}{\text {d}u} \left( \text {nd}^l u \, \text {sd}u \, \text {cd}u \right) \\&\quad = -(l+2) \dfrac{k'^2}{k^2} \, \text {nd}^{l+3} u \\&\qquad + (l+1) \dfrac{k'^2+1}{k^2} \, \text {nd}^{l+1} u - l \dfrac{1}{k^2} \, \text {nd}^{l-1} u \end{aligned}$$

For \(l=n-3\)

$$\begin{aligned}&\dfrac{\text {d}}{\text {d}u} \left( \text {nd}^{n-3} u \, \text {sd}u \, \text {cd}u \right) \\&\quad = (1-n) \dfrac{k'^2}{k^2} \, \text {nd}^n u \\&\qquad + (n-2) \dfrac{k'^2+1}{k^2} \, \text {nd}^{n-2} u - (3-n) \dfrac{1}{k^2} \, \text {nd}^{n-4} u \end{aligned}$$

Integrating and rearranging terms

$$\begin{aligned} I_n =&\dfrac{1}{(1-n)k'^2} \big [ (2-n) (k'^2 + 1) I_{n-2} + (n-3) I_{n-4} \big ] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnin, M., Traversa, F.L. & Bonani, F. Analysis of influence of nonlinearities and noise correlation time in a single-DOF energy-harvesting system via power balance description. Nonlinear Dyn 100, 119–133 (2020). https://doi.org/10.1007/s11071-020-05563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05563-0

Keywords

Navigation