Skip to main content
Log in

Effect of Boron in the Coarsening Rate of Chromium-Rich Carbides in 9%–12% Chromium Martensitic Creep-Resistant Steel: Experiment and Modeling at 650 °C

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, three martensitic creep-resistant steels with 100, 90, and 70 ppm of boron were investigated. The experimental data obtained from isothermal aging and creep test at 650 °C were compared with the results of simulation conducted using TC-PRISMA software. Tungsten was found to be the rate-controlling element in the coarsening of (Cr, Fe, W)23C6 carbides; however, this result differed in terms of boron-containing steel. Several studies indicate that the low solubility of boron in ferrite promotes boron enrichment in (Cr, Fe, W)23C6 carbide, thereby reducing its coarsening rate. However, this mechanism is not universally agreed upon. In the present study, a comparison between experimental and theoretical results revealed that in boron-containing steels, the coarsening of (Cr, Fe, W)23C6 carbide is controlled probably by boron volume diffusion or by trans-interface diffusion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.S. Srinivas, V.B. Rajkumar, K.C. Hari Kumar, Numerical simulation of precipitate evolution in ferritic–martensitic power plant steels precipitate evolution in ferritic–martensitic power plant steels. CALPHAD 36, 1–7 (2012)

    Article  Google Scholar 

  2. D. Rojas, J. Garcia, O. Prat, G. Sauthoff, A.R. Kaysser-Pyzalla, 9% Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650 °C. Mater. Sci. Eng. A 528, 5164–5176 (2011)

    Article  CAS  Google Scholar 

  3. F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Engineering 1, 211–224 (2015)

    Article  CAS  Google Scholar 

  4. J.P. Sanhueza, D. Rojas, O. Prat, J. Garcia, M.F. Melendrez, Laves phase in a 12% Cr martensitic/ferritic steel: evolution and characterization of nanoparticles at 650 °C. J. Nanosci. Nanotechnol. 19, 2971–2976 (2019)

    Article  CAS  Google Scholar 

  5. I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, Laves-phase precipitates in a low-carbon 9% Cr martensitic steel during aging and creep at 923 K. Mater. Sci. Eng. A 615, 153–163 (2014)

    Article  CAS  Google Scholar 

  6. D. Rojas, J. Garcia, O. Prat, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, Design and characterization of microstructure evolution during creep of 12% Cr heat resistant steels. Mater. Sci. Eng. A 527, 3864–3876 (2010)

    Article  Google Scholar 

  7. A. Kipelova, M. Odnobokova, A. Belyakov, R. Kaibyshev, Effect of Co on creep behavior of a P911 steel. Metall. Mater. Trans. A 44, 577–583 (2013)

    Article  CAS  Google Scholar 

  8. K. Maruyama, K. Sawada, J. Koike, Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 41, 641–653 (2001)

    Article  CAS  Google Scholar 

  9. J.P. Sanhueza, D. Rojas, O. Prat, J. Garcia, M.F. Melendrez, S. Suarez, Investigation of Ta-MX/Z-phase and laves phase as precipitation hardening particles in a 12 Pct Cr heat-resistant steel. Metall. Mater. Trans. A 49, 2951–2962 (2018)

    Article  CAS  Google Scholar 

  10. F. Abe, M. Taneike, K. Sawada, Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides. Int. J. Press. Vessels Pip. 84, 3–12 (2007)

    Article  CAS  Google Scholar 

  11. F. Abe, Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater. Sci. Eng. A 510–511, 64–69 (2009)

    Article  Google Scholar 

  12. O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels. Intermetallics 32, 362–372 (2013)

    Article  CAS  Google Scholar 

  13. F. Abe, T. Horiuchi, M. Taneike, K. Sawada, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Mater. Sci. Eng. A 378, 299–303 (2004)

    Article  Google Scholar 

  14. O. Prat, J. García, D. Rojas, J.P. Sanhueza, C. Camurri, Study of nucleation, growth and coarsening of precipitates in a novel 9% Cr heat resistant steel: experimental and modeling. Mater. Chem. Phys. 143, 754–764 (2014)

    Article  CAS  Google Scholar 

  15. I. Fedorova, F. Liu, F.B. Grumsen, Y. Cao, O.V. Mishin, J. Hald, Fine (Cr, Fe)2B borides on grain boundaries in a 10Cr–0.01B martensitic steel. Scr. Mater. 156, 124–128 (2018)

    Article  CAS  Google Scholar 

  16. F. Liu, D.H.R. Fors, A. Golpayegani, H.-O. Andren, G. Wahnström, Effect of boron on carbide coarsening at 873 K (600 °C) in 9 to 12 pct chromium steels. Metall. Mater. Trans. A 43, 4053–4062 (2012)

    Article  CAS  Google Scholar 

  17. F. Abe, Effect of boron on creep deformation behavior and microstructure evolution in 9% Cr steel at 650 °C. Int. J. Mater. Res. 99, 387–394 (2008)

    Article  CAS  Google Scholar 

  18. T. Horiuchi, M. Igarashi, F. Abe, Improved utilization of added B in 9Cr heat-resistant steels containing W. ISIJ Int. 42, 67–71 (2002)

    Article  Google Scholar 

  19. P. Hofer, M.K. Miller, S.S. Babu, S.A. David, H. Cerjak, Atom probe field ion microscopy investigation of boron containing martensitic 9 Pct chromium steel. Metall. Mater. Trans. A 31, 975–984 (2000)

    Article  Google Scholar 

  20. M. Hättestrand, B. Järbo, Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—an experimental and theoretical study. Metall. Mater. Trans. A 32, 19–27 (2001)

    Article  Google Scholar 

  21. D.R.G. Mitchell, S. Sulaiman, Advanced TEM specimen preparation methods for replication of P91 steel. Mater. Charact. 56, 49–58 (2006)

    Article  CAS  Google Scholar 

  22. N. Saunders, A.P. Miodownik, in CALPHAD: a comprehensive guide, ed. by R.W. Chan (Pergamon, Oxford, 1998), vol. 1, pp. 91–124

  23. B. Sundman, J. Agren, A Regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42, 297–301 (1981)

    Article  CAS  Google Scholar 

  24. M. Perrut, Thermodynamic modeling by the Calphad method and its applications to innovative materials. AerospaceLab 9, 1–11 (2015)

    Google Scholar 

  25. J.P. Sanhueza, D. Rojas, J. García, M.F. Melendrez, E. Toledo, C. Montalba, M.I. Alvarado, A.F. Jaramillo, Computational modeling of the effect of B and W in the phase transformation of M23C6 carbides in 9 to 12 pct Cr martensitic/ferritic steels. Mater. Res. Express 6(11), 1–15 (2009)

    Google Scholar 

  26. TCFE8—TCS Steels/Fe-Alloys Database, Version 8.0, https://www.thermocalc.com/media/10306/dbd_tcfe8_extendedinfo.pdf. Accessed 26 May 2019

  27. J.S. Langer, A.J. Schwartz, Kinetics of nucleation in near-critical fluids A. Phys. Rev. A 21, 948–958 (1980)

    Article  CAS  Google Scholar 

  28. R. Kampmann, R. Wagner, in Kinetics of Precipitation in Metastable Binary Alloys-Theory and Application, Decomposition of Alloys: the Early Stages, ed. by P. Haasen, V. Gerold, R. Wagner, M.F. Ashby (Pergamon, Oxford, 1984), pp. 91–103

  29. Q. Du, Y. Li, An extension of the KampmannWagner numerical model towards as-cast grain size prediction of multicomponent aluminum alloys. Acta Mater. 71, 380–389 (2014)

    Article  CAS  Google Scholar 

  30. Precipitation Module (TC-PRISMA) User Guide: ThermoCalc Version 2018b, https://www.thermocalc.com/media/84379/2018b-Precipitation-Module-TC-PRISMA-User-Guide.pdf. Accessed 13 Jan 2019

  31. G. Madras, B.J. McCoy, Continuous distribution theory for Ostwald ripening: comparison with the LSW approach. Chem. Eng. Sci. 58, 2903–2909 (2003)

    Article  CAS  Google Scholar 

  32. D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser-Pyzalla, Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650 °C. Mater. Sci. Eng. A 528, 1372–1381 (2011)

    Article  Google Scholar 

  33. A. Kipelova, A. Belyakov, R. Kaibyshev, The crystallography of M23C6 carbides in a martensitic 9% Cr steel after tempering, aging and creep. Philos. Mag. 93, 2259–2268 (2013)

    Article  CAS  Google Scholar 

  34. M. Hattestrand, H.O. Andren, Influence of strain on precipitation reactions during creep of an advanced 9% chromium steel. Acta Mater. 49, 2123–2128 (2001)

    Article  CAS  Google Scholar 

  35. O. Prat, J. García, D. Rojas, C. Carrasco, A.R. Kaysser-Pyzalla, Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics. Mater. Sci. Eng. A 527, 5976–5983 (2010)

    Article  Google Scholar 

  36. M. Rashidi, J. Odqvist, L. Johansson, J. Hald, H.O. Andrén, F. Liu, Experimental and theoretical investigation of precipitate coarsening rate in Z-phase strengthened steels. Materialia 4, 247–254 (2018)

    Article  Google Scholar 

  37. J.P. Sanhueza, D. Rojas, O. Prat, J. Garcia, R. Espinoza, C. Montalba, M.F. Melendrez, Precipitation kinetics in a 10.5% Cr heat resistant steel: experimental results and simulation by TC-PRISMA/DICTRA. Mater. Chem. Phys. 200, 342–353 (2017)

    Article  CAS  Google Scholar 

  38. M. Yoshizawa, M. Igarashi, T. Nishizawa, Effect of tungsten on the ostwald ripening of M23C6 carbides in martensitic heat resistant steel. ISIJ Int. 91, 272–277 (2005)

    CAS  Google Scholar 

  39. A.J. Ardell, Trans-interface-diffusion-controlled coarsening in ternary alloys. Acta Mater. 61, 7749–7754 (2013)

    Article  CAS  Google Scholar 

  40. A. Aghajani, C. Somsen, G. Eggeler, On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 57, 5093–5106 (2009)

    Article  CAS  Google Scholar 

  41. K. Sawada, H. Kushima, K. Kimura, Z-phase formation during creep and aging in 9–12% Cr heat resistant steels. ISIJ Int. 46, 769–775 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Sanhueza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanhueza, J.P., Rojas, D., García, J. et al. Effect of Boron in the Coarsening Rate of Chromium-Rich Carbides in 9%–12% Chromium Martensitic Creep-Resistant Steel: Experiment and Modeling at 650 °C. Met. Mater. Int. 27, 3097–3104 (2021). https://doi.org/10.1007/s12540-020-00676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00676-y

Keywords

Navigation