Skip to main content
Log in

Development of ZnO nanostructure film for pH sensing application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured zinc oxide sensing film was deposited on the Si/SiO2/Pt substrate by the RF magnetron sputtering process. The film was characterized by FESEM (field-emission scanning electron microscope) and XRD (X-ray diffraction) for their morphology and structural analysis. The FESEM results show that the film morphology is in nanophase with an average nanostructure size of ~ 50 nm. XRD results show that the film is polycrystalline. The AFM (atomic force microscopy) and Raman spectroscopy were done to analyze the surface roughness and the structural properties of the film, respectively. FTIR (Fourier-transform infrared spectroscopy) was used to analyze the presence of ZnO. Further, the ZnO nanostructure film has been explored for pH sensing for pH (4–12). The sensitivity of the film was found to be 31.81 mV/pH. The drift characteristics of the film were also done to find out the stability of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 1(60), 208–337 (2014)

    Article  Google Scholar 

  2. Q. Shao, R.H. Que, M.W. Shao, Q. Zhou, D.D. Ma, S.T. Lee, Shape controlled flower-like silicon oxide nanowires and their pH response. Appl. Surf. Sci. 257(13), 5559–5562 (2011)

    Article  ADS  Google Scholar 

  3. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56(2), 175–287 (2011)

    Article  Google Scholar 

  4. P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1, 70–71 (1970)

    Article  Google Scholar 

  5. I. Lauks, P. Chan, D. Babic, The extended gate chemically-sensitive field effect transistor as multi-species microprobe. Sens. Actuators 4, 291–298 (1983)

    Article  Google Scholar 

  6. S.A. Pullano, C.D. Critello, I. Mahbub, N.T. Tasneem, S. Shamsir, S.K. Islam, M. Greco, A.S. Fiorillo, EGFET-based sensors for bioanalytical applications: a review. Sensors. 18(11), 4042 (2018)

    Article  Google Scholar 

  7. J.Y. Li, S.P. Chang, S.J. Chang, T.Y. Tsai, Sensitivity of EGFET pH sensors with TiO2 nanowires. ECS Solid State Lett. 3(10), 123–126 (2014)

    Article  Google Scholar 

  8. Q. Li, H. Li, J. Zhang, Z. Xu, A novel pH potentiometric sensor based on electrochemically synthesized polybisphenol A films at an ITO electrode. Sens. Actuators B Chem. 155(2), 730–736 (2011)

    Article  Google Scholar 

  9. P. Sharma, S. Gupta, R. Singh, K. Ray, S.L. Kothari, S. Sinha, R. Sharma, R. Mukhiya, K. Awasthi, M. Kumar, Hydrogen ion sensing characteristics of Na3BiO4–Bi2O3 mixed oxide nanostructures based EGFET pH sensor. Int. J. Hydrog. Energy. (2019). https://doi.org/10.1016/j.ijhydene.2019.07.252

    Article  Google Scholar 

  10. S.P. Chang, T.H. Yang, Sensing performance of EGFET pH sensors with CuO nanowires fabricated on glass substrate. Int. J. Electrochem. Sci. 7, 5020–5027 (2012)

    Google Scholar 

  11. S.X. Chen, S.P. Chang, S.J. Chang, Investigation of InN nanorod-based EGFET pH sensors fabricated on quartz substrate. Dig. J. Nanomater. Biostruct. 9, 1505–1511 (2014)

    Google Scholar 

  12. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  ADS  Google Scholar 

  13. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000)

    Article  Google Scholar 

  14. J.I. Oda, J.I. Nomoto, T. Miyata, T. Minami, Improvements of spatial resistivity distribution in transparent conducting Al-doped ZnO thin films deposited by DC magnetron sputtering. Thin Solid Films 518(11), 2984–2987 (2010)

    Article  ADS  Google Scholar 

  15. Yen WT, Ke JH, Wang HJ, Lin YC, Chiang JL, in Influences on optoelectronic properties of damp heat stability of AZO and GZO for thin film solar cells. Advanced Materials Research 2009, vol. 79 (Trans Tech Publications), pp. 923–926

  16. Y. Liu, M. Zhong, G. Shan, Y. Li, B. Huang, G. Yang, Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering. J. Phys. Chem. B 112(20), 6484–6489 (2008)

    Article  Google Scholar 

  17. M. Tak, V. Gupta, M. Tomar, Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection. Biosens. Bioelectron. 15(59), 200–207 (2014)

    Article  Google Scholar 

  18. H.C. Pan, M.H. Shiao, C.Y. Su, C.N. Hsiao, Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films. J. Vac. Sci. Technol., A 23(4), 1187–1191 (2005)

    Article  ADS  Google Scholar 

  19. X. Zhang, Z. Dong, S. Liu, Y. Shi, Y. Dong, W. Feng, Maize straw-templated hierarchical porous ZnO: Ni with enhanced acetone gas sensing properties. Sens. Actuators B Chem. 1(243), 1224–1230 (2017)

    Article  Google Scholar 

  20. X. Zhao, Y. Li, C. Ai, D. Wen, Resistive switching characteristics of li-doped ZnO thin films based on magnetron sputtering. Materials. 12(8), 1282 (2019)

    Article  ADS  Google Scholar 

  21. S. Singh, A. Singh, R.R. Yadav, P. Tandon, Growth of zinc ferrite aligned nanorods for liquefied petroleum gas sensing. Mater. Lett. 15(131), 31–34 (2014)

    Article  Google Scholar 

  22. A.K. Jaiswal, S. Singh, A. Singh, R.R. Yadav, P. Tandon, B.C. Yadav, Fabrication of Cu/Pd bimetallic nanostructures with high gas sorption ability towards development of LPG sensor. Mater. Chem. Phys. 15(154), 16–21 (2015)

    Article  Google Scholar 

  23. K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 97(12), 124313 (2005)

    Article  ADS  Google Scholar 

  24. S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet, Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71(4), 1234–1238 (2008)

    Article  ADS  Google Scholar 

  25. D.L. Golic, G. Brankovic, M.P. Nešic, K. Vojisavljevic, A. Recnik, N. Daneu, S. Bernik, M. Šcepanovic, D. Poleti, Z. Brankovic, Structural characterization of self-assembled ZnO nanoparticles obtained by the sol–gel method from Zn (CH3COO) 2 2H2O. Nanotechnology. 22(395603), 9 (2011)

    Google Scholar 

  26. R. Cuscó, E. Alarcón-Lladó, J. Ibanez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Temperature dependence of Raman scattering in ZnO. Phys. Rev. B. 75(16), 165202 (2007)

    Article  ADS  Google Scholar 

  27. Calizo I, Alim KA, Fonoberov VA, Krishnakumar S, Shamsa M, Balandin AA, Kurtz R, in Micro-Raman spectroscopic characterization ZnO quantum dots, nanocrystals, and nanowires. Quantum Dots, Particles, and Nanoclusters IV 2007, vol 6481. International Society for Optics and Photonics, p. 64810 N

  28. S.S. Kanmani, K. Ramachandran, S. Umapathy, Eosin yellowish dye-sensitized ZnO nanostructure-based solar cells employing solid PEO redox couple electrolyte. Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/267824

    Article  Google Scholar 

  29. M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, Optical phonon confinement in zinc oxide nanoparticles. J. Appl. Phys. 87(5), 2445–2448 (2000)

    Article  ADS  Google Scholar 

  30. B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Structural studies of Mn doped ZnO nanoparticles. Curr. Appl. Phys. 11(3), 762–766 (2011)

    Article  ADS  Google Scholar 

  31. K.S. Babu, A.R. Reddy, C. Sujatha, K.V. Reddy, A.N. Mallika, Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2(3), 260–265 (2013)

    Article  Google Scholar 

  32. M. Khan, A.H. Naqvi, M. Ahmad, Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol. Rep. 1(2), 765–774 (2015)

    Article  Google Scholar 

  33. K. Khun, Z.H. Ibupoto, M.S. AlSalhi, M. Atif, A.A. Ansari, M. Willander, Fabrication of well-aligned ZnO nanorods using a composite seed layer of ZnO nanoparticles and chitosan polymer. Materials 6(10), 4361–4374 (2013)

    Article  ADS  Google Scholar 

  34. D.E. Yates, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases. 70, 1807–1818 (1974)

    Google Scholar 

  35. R.E. Van Hal, J.C. Eijkel, P. Bergveld, A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B Chem. 24(1–3), 201–205 (1995)

    Google Scholar 

  36. H.K. Liao, L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, Study on pHpzc and surface potential of tin oxide gate ISFET. Mater. Chem. Phys. 59(1), 6–11 (1999)

    Article  Google Scholar 

  37. K.B. Oldham, A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 613(2), 131–138 (2008)

    Article  Google Scholar 

  38. S. Al-Hilli, R. Al-Mofarji, P. Klason, N. Gutman, A. Sa’Ar, A. Ost , P. Stralfors, M. Willander. Zinc oxide nanorods as an intracellular pH sensor, European Nano Systems (ENS) Worshop, Paris, France, 03–04 December 2007, pp. 38–43

  39. A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng., B 176(18), 1409–1421 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge IIT, Jodhpur for extending the experimental facility, and MRC, MNIT Jaipur for characterization facilities. Authors are also thankful to CSIR, New Delhi for providing the research facilities and financial support. They also acknowledge the support of Director, CSIR-CEERI, Pilani.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prashant Sharma or Manoj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Bhati, V.S., Kumar, M. et al. Development of ZnO nanostructure film for pH sensing application. Appl. Phys. A 126, 284 (2020). https://doi.org/10.1007/s00339-020-03466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03466-w

Keywords

Navigation