Skip to main content
Log in

A Combined Thermochemical and Microbial Process for Recycling Polylactic Acid Polymer to Optically Pure l-Lactic Acid for Reuse

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactic acid polymer (PLA) produced from renewable resources can be recycled at the end of life to constituent monomer, optically pure lactic acid (LA), by a combination of chemical and biological processes. Efficient application of this closed loop of LA-PLA plastics-LA can minimize accumulation of plastics waste that pollute land and oceans. Temperature-dependent hydrolysis of PLA in water to LA follows apparent first order decay kinetics after a short lag. A modified Gompertz equation can explain the overall hydrolysis process. Alkali increased the rate of hydrolysis of PLA and reduced the length of lag period compared to water alone. The stoichiometry of base added to LA released was 1.0. The highest lactic acid yield was 0.95 g g−1 of PLA. d-LA in the syrup obtained after hydrolysis of PLA-plastics was removed using an engineered Escherichia coli to produce a l-LA syrup with an optical purity ≥ 99%. These results show that thermochemical hydrolysis of PLA-based plastics to LA with optimum amount of base followed by bio-based purification to l-LA is an effective method of recycling PLA-plastics for reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garside M (2019) Plastics industry—statistics & facts https://www.statista.com/topics/5266/plastics-industry/

  2. Thevenon F, Carroll C, Sousa J (2014) Plastic debris in the ocean: the characterization of marine plastics and their environmental impacts, situation analysis report. IUCN, Gland

  3. Waring RH, Harris RM, Mitchell SC (2018) Maturitas 115:64–68

    CAS  PubMed  Google Scholar 

  4. Law KL (2017) Ann Rev Mar Sci 9:205–229

    PubMed  Google Scholar 

  5. Bittner GD, Yang CZ, Stoner MA (2014) Environ Health 13:41

    PubMed  PubMed Central  Google Scholar 

  6. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2018) Polym Degrad Stabil 154:46–54

    CAS  Google Scholar 

  7. Farrington DW, Lunt J, Davies S, Blackburn RS (2005) In: Blackburn RS (ed) Biodegradable and sustainable fibres. CRC Press, Boca Raton, pp 191–220

    Google Scholar 

  8. Valentina I, Haroutioun A, Fabrice L, Vincent V, Roberto P (2018) Materials 11:1943

    PubMed Central  Google Scholar 

  9. Auras RA, Lim L, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken

    Google Scholar 

  10. Tsuji H, Daimon H, Fujie K (2003) Biomacromol 4:835–840

    CAS  Google Scholar 

  11. European bioplastics (2017) Bioplastics market data. https://www.european-bioplastics.org/market/

  12. Grand view research (2019) Polylactic acid (PLA) market size, share & trends analysis report by application (packaging, agriculture, transport), by region (North America, APAC, Europe, CSA, MEA), and segment forecasts, 2019–2025. https://www.grandviewresearch.com/industry-analysis/polylactic-acid-pla-market

  13. Kolstad JJ (1996) J Appl Polym Sci 62:1079–1091

    CAS  Google Scholar 

  14. Tsuji H (2005) Macromol Biosci 5:569–597

    CAS  PubMed  Google Scholar 

  15. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835–864

    CAS  PubMed  Google Scholar 

  16. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Angew Chem Int Ed 58:50–62

    CAS  Google Scholar 

  17. Vink ETH, Rabago KR, Glassner DA, Gruber PR (2003) Polym Degrad Stabil 80:403–419

    CAS  Google Scholar 

  18. Lu H, Madbouly SA, Schrader JA, Srinivasan G, McCabe KG, Grewell D, Kessler MR, Graves WR (2014) ACS Sustain Chem Eng 2:2699–2706

    CAS  Google Scholar 

  19. Piemonte V, Sabatini S, Gironi F (2013) J Polym Environ 21:640–647

    CAS  Google Scholar 

  20. Tsukegi T, Motoyama T, Shirai Y, Nishida H, Endo T (2007) Polym Degrad Stabil 92:552–559

    CAS  Google Scholar 

  21. Boonpan A, Pivsa-art S, Pongswat S, Areesirisuk A, Sirisangsawang P (2013) Energy Procedia 34:898–904

    CAS  Google Scholar 

  22. Chauliac D, Pullammanappallil PC, Ingram LO, Shanmugam KT (2015) Biotechnol Lett 37:2411–2418

    CAS  PubMed  Google Scholar 

  23. Henton DE, Gruber P, Lunt J, Randall J (2005). In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 527–577

    Google Scholar 

  24. Yagihashi M, Funazukuri T (2010) Ind Eng Chem Res 49:1247–1251

    CAS  Google Scholar 

  25. Tsuji H, Saeki T, Tsukegi T, Daimon H, Fujie K (2008) Polym Degrad Stabil 93:1956–1963

    CAS  Google Scholar 

  26. Tsuji H, Nakahara K, Ikarashi K (2001) Macromol Mater Eng 286:398–406

    CAS  Google Scholar 

  27. Brake LD, Subramanian NS (1993) Rapid depolymerization of polyhydroxy acids. United States Patent 5,229,528

  28. Cristina AM, Sara F, Fausto G, Vincenzo P, Rocchina S, Claudio V (2018) J Polym Environ 26:4396–4404

    CAS  Google Scholar 

  29. Piemonte V, Gironi F (2013) J Polym Environ 21:275–279

    CAS  Google Scholar 

  30. Grewell D, Srinivasan G, Cochran E (2014) J Renew Mater 2:157–165

    Google Scholar 

  31. Gironi F, Frattari S, Piemonte V (2016) J Polym Environ 24:328–333

    CAS  Google Scholar 

  32. Song XY, Wang H, Yang XQ, Liu FS, Yu ST, Liu SW (2014) Polym Degrad Stabil 110:65–70

    CAS  Google Scholar 

  33. Lee S, Kim S, Han Y, Kim Y (2001) J Polym Sci 39:973–985

    CAS  Google Scholar 

  34. Gompertz B (1825) Philos Trans R Soc Lond 115:513–583

    Google Scholar 

  35. Zwietering MH, Jongenburger I, Rombouts FM, van't Riet K (1990) Appl Environ Microbiol 56:1875–1881

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sungsanit K, Kao N, Bhattacharya SN, Pivsaart S (2010) Korea-Aust Rheol J 22:187–195

    Google Scholar 

  37. Zwietering MH, Rombouts FM, van’t Riet K (1992) J Appl Bacteriol 72:139–145

    CAS  PubMed  Google Scholar 

  38. Arrhenius S (1901) Abstr Proc R Acad Sci 58:25–58

    Google Scholar 

  39. Piemonte V, Gironi F (2013) J Polym Environ 21:313–318

    CAS  Google Scholar 

  40. Iniguez-Franco F, Auras R, Dolan K, Selke S, Holmes D, Rubino M, Soto-Valdez H (2018) Polym Degrad Stabil 149:28–38

    CAS  Google Scholar 

  41. Siparsky GL, Voorhees KJ, Miao F (1998) J Polym Environ 6:31–41

    CAS  Google Scholar 

  42. Scaffaro R, Maio A, Sutera F, Gulino EF, Morreale M (2019) Polymers 11:651

    CAS  PubMed Central  Google Scholar 

  43. Tham CY, Hamid ZAA, Ahmad Z, Ismail H (2014) Key Eng Mater 594–595:214–218

    Google Scholar 

  44. Tsuji H, Ikada Y (1998) J Polym Sci Pol Chem 36:59–66

    CAS  Google Scholar 

  45. Makino K, Arakawa M, Kondo T (1985) Chem Pharm Bull 33:1195–1201

    CAS  PubMed  Google Scholar 

  46. Lockwood LB, Yoder DE, Zienty M (1965) Ann N Y Acad Sci 119:854–867

    CAS  PubMed  Google Scholar 

  47. Zhou J, Bi W, Row KH (2011) Korean J Chem Eng 28:1608–1612

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US Department of Agriculture (USDA) (2012-67009-19596; LOI) and Biomass Research and Development Initiative Competitive Grant (2011-10006-30358) from the USDA National Institute of Food and Agriculture. This work was also supported by funding from the US Department of Energy’s International Affairs under Award Number DE-PI0000031 and the Florida Department of Agriculture and Consumer Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Shanmugam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauliac, D., Pullammanappallil, P.C., Ingram, L.O. et al. A Combined Thermochemical and Microbial Process for Recycling Polylactic Acid Polymer to Optically Pure l-Lactic Acid for Reuse. J Polym Environ 28, 1503–1512 (2020). https://doi.org/10.1007/s10924-020-01710-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01710-1

Keywords

Navigation