Skip to main content

Advertisement

Log in

Update on naturally occurring novel arylnaphthalenes from plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Arylnaphthalene compounds, also called cyclolignolides, are lignans and have been extensively studied and documented, especially podophyllotoxin and its derivatives. Great progress has been made in phytochemical studies on arylnaphthalenes in the last 20 years (1999–2019), and arylnaphthalenes have been reported to have various biological activities. A total of 338 new arylnaphthalene compounds from over 60 families, including Acanthaceae, Phyllanthaceae, Lamiaceae, Lauraceae, Schisandraceae, Berberidaceae, and Boraginaceae, have been discovered. This paper will highlight their structural features, sources, and biological activities and briefly discuss their structure–activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Juaid SS, Abdel-Mogib M (2004) A novel podophyllotoxin lignan from Justicia heterocarpa. Chem Pharm Bull 52:507–509

    CAS  PubMed  Google Scholar 

  • Ashour ML, El-Readi MZ, Tahrani A et al (2012) A novel cytotoxic aryltetraline lactone from Bupleurum marginatum (Apiaceae). Phytochem Lett 5:387–392

    CAS  Google Scholar 

  • Azhar-ul-Haq MA, Afza N et al (2006) Coumaroyl adenosine and lignan glycoside from Amaranthus spinosus L. Pol J Chem 80:259–263

    CAS  Google Scholar 

  • Azhar-Ul-Haq MA, Anis I et al (2004) Enzyme inhibiting lignans from Vitex negundo. Chem Pharm Bull 52:1269–1272

    CAS  PubMed  Google Scholar 

  • Bai M, Wu LJ, Cai Y et al (2017) One new lignan derivative from the Combretum alfredii Hance. Nat Prod Res 31:1022–1027

    CAS  PubMed  Google Scholar 

  • Borges LDC, Negrao-Neto R, Pamplona S et al (2018) Anti-inflammatory and antinociceptive studies of hydroalcoholic extract from the leaves of Phyllanthus brasiliensis (Aubl.) Poir. and isolation of 5-O-β-d-glucopyranosyljusticidin B and six other lignans. Molecules 23:941

    PubMed Central  Google Scholar 

  • Cai WH, Matsunami K, Otsuka H et al (2009) Lignan and neolignan glucosides, and tachioside 2′-O-4″-O-methylgallate from the leaves of Glochidion rubrum. J Nat Med 63:408–414

    CAS  PubMed  Google Scholar 

  • Chai XY, Ren HY, Xu ZR et al (2009) Investigation of two Flacourtiaceae plants: Bennettiodendron leprosipes and Flacourtia ramontchi. Planta Med 75:1246–1252

    CAS  PubMed  Google Scholar 

  • Chang WL, Chiu LW, Lai JH et al (2003) Immunosuppressive flavones and lignans from Bupleurum scorzonerifolium. Phytochemistry 64:1375–1379

    CAS  PubMed  Google Scholar 

  • Chen B, Liu Y, Feng C et al (2002) Two new arylnaphthalene lignan glycosides from Mananthes patentiflora. Chin Chem Lett 13:959–962

    CAS  Google Scholar 

  • Chen FY, Li CJ, Ma J et al (2018) Diterpenoids and lignans from the leaves of Tripterygium wilfordii. Fitoterapia 129:133–137

    CAS  PubMed  Google Scholar 

  • Chen H, Li YJ, Sun YJ et al (2017) Lignanamides with potent antihyperlipidemic activities from the root bark of Lycium chinense. Fitoterapia 122:119–125

    CAS  PubMed  Google Scholar 

  • Chen TH, Huang YH, Lin JJ et al (2010) Cytotoxic lignan esters from Cinnamomum osmophloeum. Planta Med 76:613–619

    CAS  PubMed  Google Scholar 

  • Chen TH, Liau BC, Wang SY et al (2008) Isolation and cytotoxicity of the lignanoids from Chamaecyparis formosensis. Planta Med 74:1806–1811

    CAS  PubMed  Google Scholar 

  • Cheng W, Zhu CG, Xu WD et al (2009a) Chemical constituents of the bark of Machilus wangchiana and their biological activities. J Nat Prod 72:2145–2152

    CAS  PubMed  Google Scholar 

  • Cheng YB, Chang MT, Lo YW et al (2009b) Oxygenated lignans from the fruits of Schisandra arisanensis. J Nat Prod 72:1663–1668

    CAS  PubMed  Google Scholar 

  • Cuong TD, Hung TM, Kim JC et al (2010) Two new lignans from the roots of Pulsatilla koreana. Planta Med 77:66–69

    PubMed  Google Scholar 

  • da Silva SAS, Souto AL, de Fátima AM et al (2004) A new arylnaphthalene type lignan from Cordia rufescens A. DC. (Boraginaceae). Arkivoc 6:54–58

    Google Scholar 

  • da Silva T, Lopes LM (2006) Aryltetralol and aryltetralone lignans from Holostylis reniformis. Phytochemistry 67:929–937

    PubMed  Google Scholar 

  • Dang PH, Nguyen HX, Nguyen HHT et al (2017) Lignans from the roots of Taxus wallichiana and their α-glucosidase inhibitory activities. J Nat Prod 80:1876–1882

    CAS  PubMed  Google Scholar 

  • Day SH, Chiu NY, Tsao LT et al (2000) New lignan glycosides with potent antiinflammatory effect, isolated from Justicia ciliata. J Nat Prod 63:1560–1562

    CAS  PubMed  Google Scholar 

  • Day SH, Chiu NY, Won SJ et al (1999) Cytotoxic lignans of Justicia ciliata. J Nat Prod 62:1056–1058

    CAS  PubMed  Google Scholar 

  • de Andrade-Neto VF, da Silva T, Lopes LM et al (2007) Antiplasmodial activity of aryltetralone lignans from Holostylis reniformis. Antimicrob Agents Chemother 51:2346–2350

    PubMed  PubMed Central  Google Scholar 

  • Dekebo A, Lang M, Polborn K et al (2002) Four lignans from Commiphora erlangeriana. J Nat Prod 65:1252–1257

    CAS  PubMed  Google Scholar 

  • Dubinnyi MA, Osmakov DI, Koshelev SG et al (2012) Lignan from thyme possesses inhibitory effect on ASIC3 channel current. J Biol Chem 287:32993–33000

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Rokh AR, Negm A, El-Shamy M et al (2018) Sucrose diester of aryldihydronaphthalene-type lignans from Echium angustifolium Mill. and their antitumor activity. Phytochemistry 149:155–160

    CAS  PubMed  Google Scholar 

  • Fang JJ, Reichelt M, Kai M et al (2012) Metabolic profiling of lignans and other secondary metabolites from rapeseed (Brassica napus L.). J Agric Food Chem 60:10523–10529

    CAS  PubMed  Google Scholar 

  • Fang ZF, Zhang T, Cao XQ et al (2018) Novel sesquilignan and lignan glycoside from the twigs and leaves of Illicium majus. Fitoterapia 129:42–46

    CAS  PubMed  Google Scholar 

  • Fu Q, Zhou C, Ma Y et al (2017) Lipoxygenase-inhibiting lignans from Clematis mandshurica. J Asian Nat Prod Res 19:884–889

    CAS  PubMed  Google Scholar 

  • Gan LS, Yang SP, Fan CQ et al (2005) Lignans and Their Degraded Derivatives from Sarcostemma acidum. J Nat Prod 68:221–225

    CAS  PubMed  Google Scholar 

  • Gao YP, Shen YH, Xu XK et al (2014) Two novel lignans from Gaultheria yunnanensis. J Asian Nat Prod Res 16:724–729

    CAS  PubMed  Google Scholar 

  • Gertsch J, Tobler RT, Brun R et al (2003) Antifungal, antiprotozoal, cytotoxic and piscicidal properties of Justicidin B and a new arylnaphthalide lignan from Phyllanthus piscatorum. Planta Med 49:420–424

    Google Scholar 

  • Gordaliza M, del Corral JMM, Castro MA et al (2001) Cytotoxic cyclolignans related to podophyllotoxin. IL Farmaco 56:297–304

    CAS  PubMed  Google Scholar 

  • Gu JQ, Park EJ, Totura S et al (2002) Constituents of the twigs of Hernandia ovigera that inhibit the transformation of JB6 murine epidermal cells. J Nat Prod 65:1065–1068

    CAS  PubMed  Google Scholar 

  • Han L, Huang XS, Dahse HM et al (2008) New abietane diterpenoids from the mangrove Avicennia marina. Planta Med 74:432–437

    CAS  PubMed  Google Scholar 

  • Han L, Huang XS, Sattler I et al (2007) Two new constituents from mangrove Bruguiera gymnorrhiza. J Asian Nat Prod Res 9:327–331

    CAS  PubMed  Google Scholar 

  • Hartwell JL, Schrecker AW (1951) Components of Podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916

    CAS  Google Scholar 

  • He WJ, Chu HB, Zhang YM et al (2011) Antimicrobial, cytotoxic lignans and terpenoids from the twigs of Pseudolarix kaempferi. Planta Med 77:1924–1931

    CAS  PubMed  Google Scholar 

  • He WJ, Fu ZH, Zeng GZ et al (2012) Terpene and lignan glycosides from the twigs and leaves of an endangered conifer, Cathaya argyrophylla. Phytochemistry 83:63–69

    CAS  PubMed  Google Scholar 

  • Hu HB, Zheng SZ, Zheng XD et al (2005a) Chemical constituents of Rodgersia sambucifolia Hemsl. Indian J Chem 44B:2399–2403

    CAS  Google Scholar 

  • Hu JF, Garo E, Yoo HD et al (2005b) Cyclolignans from Scyphocephalium ochocoa via high-throughput natural product chemistry methods. Phytochemistry 66:1077–1082

    CAS  PubMed  Google Scholar 

  • Huang HC, Lin YC, Fazary AE et al (2011) New and bioactive lignans from the fruits of Schisandra sphenanthera. Food Chem 128:348–357

    CAS  PubMed  Google Scholar 

  • Innocenti G, Puricelli L, Piacente S et al (2002) Patavine, a new arylnaphthalene lignan glycoside from shoot cultures of Haplophyllum patavinum. Chem Pharm Bull 50:844–846

    CAS  PubMed  Google Scholar 

  • Jeong EJ, Cho JH, Sung SH et al (2011) Inhibition of nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophage cells by lignans isolated from Euonymus alatus leaves and twigs. Bioorgan Med Chem Lett 21:2283–2286

    CAS  Google Scholar 

  • Jiang YP, Liu YF, Guo QL et al (2016) Lignanoids from an aqueous extract of the roots of Codonopsis pilosula. Acta Pharm Sin 51:616–625

    Google Scholar 

  • Jiang ZH, Tanaka T, Sakamoto M et al (2001) Studies on a medicinal parasitic plant lignans from the stems of Cynomorium songaricum. Chem Pharm Bull 49:1036–1038

    CAS  PubMed  Google Scholar 

  • Jin H, Yang S, Dong JX (2017) New lignan glycosides from Justicia procumbens. J Asian Nat Prod Res 19:1–8

    PubMed  Google Scholar 

  • Jin H, Yin HL, Liu SJ et al (2014) Cytotoxic activity of lignans from Justicia procumbens. Fitoterapia 94:70–76

    CAS  PubMed  Google Scholar 

  • Jutiviboonsuk A, Zhang HJ, Tan GT et al (2005) Bioactive constituents from roots of Bursera tonkinensis. Phytochemistry 66:2745–2751

    CAS  PubMed  Google Scholar 

  • Kanchanapoom T, Kamel MS, Kasai R et al (2001a) Lignan glucosides from Acanthus ilicifolius. Phytochemistry 56:369–372

    CAS  PubMed  Google Scholar 

  • Kanchanapoom T, Kasai R, Yamasaki K (2001b) Lignan and phenylpropanoid glycosides from Fernandoa adenophylla. Phytochemistry 57:1245–1248

    CAS  PubMed  Google Scholar 

  • Kanchanapoom T, Noiarsa P, Otsuka H et al (2006) Lignan, phenolic and iridoid glycosides from Stereospermum cylindricum. Phytochemistry 67:516–520

    CAS  PubMed  Google Scholar 

  • Kashima K, Sano K, Yun YS et al (2010) Ovafolinins A—E, five new lignans from Lyonia ovalifolia. Chem Pharm Bull 58:191–194

    CAS  PubMed  Google Scholar 

  • Katsui H, Sugimoto S, Matsunami K et al (2017) Lignan diesters of canangafruticoside a from the leaves of Cananga odorata var. odorata. Chem Pharm Bull 65:97–101

    CAS  PubMed  Google Scholar 

  • Kavitha J, Gopalaiah K, Rajasekhar D et al (2003) Juspurpurin, an Unusual Secolignan Glycoside from Justicia purpurea. J Nat Prod 66:1113–1115

    CAS  PubMed  Google Scholar 

  • Kawazoe K, Yutani A, Tamemoto K et al (2001) Phenylnaphthalene compounds from the subterranean part of Vitex rotundifolia and their antibacterial activity against methicillin-resistant Staphylococcus aureus. J Nat Prod 64:588–591

    CAS  PubMed  Google Scholar 

  • Khan S, Riaz N, Afza N et al (2009) Antioxidant constituents from Cotoneaster racemiflora. J Asian Nat Prod Res 11:44–48

    CAS  PubMed  Google Scholar 

  • Kim KH, Moon E, Kim SY et al (2012) Lignan constituents of Tilia amurensis and their biological evaluation on antitumor and anti-inflammatory activities. Food Chem Toxicol 50:3680–3686

    CAS  PubMed  Google Scholar 

  • Ku YL, Chen CH, Lee SS (2006) Chemical constituents from Phoebe minutiflora II. Nat Prod Res 20:1199–1206

    CAS  PubMed  Google Scholar 

  • Kumar M, Rawat P, Rahuja N et al (2009) Antihyperglycemic activity of phenylpropanoyl esters of catechol glycoside and its dimers from Dodecadenia grandiflora. Phytochemistry 70:1448–1455

    CAS  PubMed  Google Scholar 

  • Kumar P, Dev K, Sharma K et al (2018) New lignan glycosides from Cissus quadrangularis stems. Nat Prod Res 33:233–238

    PubMed  Google Scholar 

  • Latte KP, Kaloga M, Schafer A et al (2008) An ellagitannin, n-butyl gallate, two aryltetralin lignans, and an unprecedented diterpene ester from Pelargonium reniforme. Phytochemistry 69:820–826

    CAS  PubMed  Google Scholar 

  • Lautie E, Fliniaux MA, Villarreal ML (2010) Updated biotechnological approaches developed for 2,7′-cyclolignan production. Biotechnol Appl Biochem 55:139–153

    CAS  PubMed  Google Scholar 

  • Lee TH, Yeh MH, Chang CI et al (2007) New lignans from the heartwood of Cunninghamia lanceolata. Biosci Biotechnol Biochem 71:2075–2078

    CAS  PubMed  Google Scholar 

  • Li CX, Song XY, Zhao WY et al (2019a) Characterization of enantiomeric lignanamides from Solanum nigrum L. and their neuroprotective effects against MPP+-induced SH-SY5Y cells injury. Phytochemistry 161:163–171

    PubMed  Google Scholar 

  • Li HR, Feng YL, Yang ZG et al (2006) New lignans from Kadsura coccinea and their nitric oxide inhibitory activities. Chem Pharm Bull 54:1022–1025

    CAS  PubMed  Google Scholar 

  • Li HR, Wang LY, Yang ZG et al (2007a) Kadsuralignans H-K from Kadsura coccinea and their nitric oxide production inhibitory effects. J Nat Prod 70:1999–2002

    CAS  PubMed  Google Scholar 

  • Li N, Wu JL, Hasegawa T et al (2007b) Bioactive lignans from Peperomia duclouxii. J Nat Prod 70:544–548

    CAS  PubMed  Google Scholar 

  • Li XN, Lei C, Yang LM et al (2012) Three new arylnaphthalene lignans from Schisandra propinqua var. sinensis. Fitoterapia 83:249–252

    CAS  PubMed  Google Scholar 

  • Li XT, Xia H, Wang LY et al (2019b) Lignans from the twigs of Litsea cubeba and their bioactivities. Molecules 24:306

    PubMed Central  Google Scholar 

  • Li YL, Wu LJ, Ouyang DW et al (2011a) Phenolic compounds of Abies nephrolepis and their NO production inhibitory activities. Chem Biodivers 8:2299–2309

    CAS  PubMed  Google Scholar 

  • Li YR, Cheng W, Zhu CG et al (2011b) Bioactive neolignans and lignans from the bark of Machilus robusta. J Nat Prod 74:1444–1452

    CAS  PubMed  Google Scholar 

  • Liu GR, Wu J, Si JY et al (2008a) Complete assignments of 1H and 13C NMR data for three new arylnaphthalene lignan from Justicia procumbens. Magn Reson Chem 46:283–286

    CAS  PubMed  Google Scholar 

  • Liu Y, Young K, Rakotondraibe LH et al (2015) Antiproliferative compounds from Cleistanthus boivinianus from the madagascar dry forest. J Nat Prod 78:1543–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang TT, Zhou JS et al (2008b) Three new arylnaphthalide lignans from the aerial parts of Bupleurum marginatum WALL. ex DC. Helv Chim Acta 91:2316–2320

    CAS  Google Scholar 

  • Liu YQ, Liu Y, Xuan T (2007) Podophyllotoxin: current perspectives. Curr Bioact Compd 3:37–66

    CAS  Google Scholar 

  • Luo XD, Wu DG, Cai XH et al (2006) New antioxidant phenolic glycosides from Walsura yunnanensis. Chem Biodivers 3:224–230

    CAS  PubMed  Google Scholar 

  • Ma B, Guo HF, Lou HX (2007) A new lignan and two eudesmanes from Lepidozia vitrea. Helv Chim Acta 90:58–62

    CAS  Google Scholar 

  • Ma CJ, Kim YC, Sung SH (2009a) Compounds with neuroprotective activity from the medicinal plant Machilus thunbergii. J Enzyme Inhib Med Chem 24:1117–1121

    CAS  PubMed  Google Scholar 

  • Ma JX, Lan MS, Qu SJ et al (2012) Arylnaphthalene lignan glycosides and other constituents from Phyllanthus reticulatus. J Asian Nat Prod Res 14:1073–1077

    CAS  PubMed  Google Scholar 

  • Ma WH, Ma XL, Lu Y et al (2009b) Lignans and triterpenoids from the stems of Kadsura induta. Helv Chim Acta 92:709–715

    CAS  Google Scholar 

  • Malik A, Riaz N, Ahmad H et al (2005) Lipoxygenase inhibiting constituents from Indigofera heterantha. Chem Pharm Bull 53:262–266

    Google Scholar 

  • Meerungrueang W, Panichayupakaranant P (2016) A new antibacterial tetrahydronaphthalene lignanamide, foveolatamide, from the stems of Ficus foveolata. Nat Prod Commun 11:91–94

    PubMed  Google Scholar 

  • Mohagheghzadeh A, Schmidt TJ, Alfermann AW (2002) Arylnaphthalene lignans from in vitro cultures of Linum austriacum. J Nat Prod 65:69–71

    CAS  PubMed  Google Scholar 

  • Mojica MA, León A, Rojas-Sepúlveda AM et al (2016) Aryldihydronaphthalene-type lignans from Bursera fagaroides var. fagaroides and their antimitotic mechanism of action. RSC Adv 6:4950–4959

    CAS  Google Scholar 

  • Nagashima J, Matsunami K, Otsuka H et al (2010) The unusual canangafruticosides A–E: five monoterpene glucosides, two monoterpenes and a monoterpene glucoside diester of the aryldihydronaphthalene lignan dicarboxylic acid from leaves of Cananga odorata var. fruticosa. Phytochemistry 71:1564–1572

    CAS  PubMed  Google Scholar 

  • Nakanishi T, Inatomi Y, Murata H et al (2005) A new and known cytotoxic aryltetralin-type lignans from stems of Bursera graveolens. Chem Pharm Bull 53:229–231

    CAS  PubMed  Google Scholar 

  • Nono ECN, Mkounga P, Kuete V et al (2010) Pycnanthulignenes A–D, antimicrobial cyclolignene derivatives from the roots of Pycnanthus angolensis. J Nat Prod 73:213–216

    CAS  PubMed  Google Scholar 

  • Omar M, Matsuo Y, Maeda H et al (2013) New ellagitannin and galloyl esters of phenolic glycosides from sapwood of Quercus mongolica var. crispula (Japanese oak). Phytochem Lett 6:486–490

    CAS  Google Scholar 

  • Ono M, Mishima K, Yamasaki T et al (2009) A new lignan glucoside from the stems of Callicarpa japonica Thunb. var. luxurians Rehd. J Nat Med 63:86–90

    CAS  PubMed  Google Scholar 

  • Ono M, Nishida Y, Masuoka C et al (2004) Lignan derivatives and a norditerpene from the seeds of Vitex negundo. J Nat Prod 67:2073–2075

    CAS  PubMed  Google Scholar 

  • Otsuka H, Hirata E, Shinzato T et al (2000) Isolation of lignan glucosides and neolignan sulfate from the leaves of Glochidion zeylanicum (Gaertn) A. Juss. Chem Pharm Bull 48:1084–1086

    CAS  PubMed  Google Scholar 

  • Otsuka H, Kuwabara H, Hoshiyama H (2008) Identification of sucrose diesters of aryldihydronaphthalene-type lignans from Trigonotis peduncularis and the nature of their fluorescence. J Nat Prod 71:1178–1181

    CAS  PubMed  Google Scholar 

  • Ouyang MA, Wein YS, Su RK et al (2007) Rhusemialins A-C, new cyclolignan esters from the roots of Rhus javanica var. roxburghiana. Chem Pharm Bull 55:804–807

    CAS  PubMed  Google Scholar 

  • Padwa A, Cochran JE, Kappe CO (1996) Tandem Pummerer–Diels–Alder reaction sequence. A novel cascade process for the preparation of 1-arylnaphthalene lignans. J Organ Chem 61:3706–3714

    CAS  Google Scholar 

  • Pan JY, Chen SL, Yang MH et al (2009) An update on lignans: natural products and synthesis. Nat Prod Rep 26:1251–1292

    CAS  PubMed  Google Scholar 

  • Pan JY, Zhang S, Wu J et al (2010) Litseaglutinan A and Lignans from Litsea glutinosa. Helv Chim Acta 93:951–957

    CAS  Google Scholar 

  • Pan ZH, Ning DS, Huang SS et al (2016) Lignan glucosides from the stem barks of Illicium difengpi. Molecules 21:607

    PubMed Central  Google Scholar 

  • Pandey DP, Nautiyal DP, Rather MA et al (2011) A new arylnaphthalide lignan from Justicia prostrata Gamble. Asian J Chem 23:2125–2127

    Google Scholar 

  • Podwyssotzki V (1880) Pharmakologische studien über Podophyllum peltatum. Naunyn-Schmiedeberg Arch Pharmacol 13:29–52

    Google Scholar 

  • Pullela SV, Takamatsu S, Khan SI et al (2005) Isolation of lignans and biological activity studies of Ephedra viridis. Planta Med 71:789–791

    CAS  PubMed  Google Scholar 

  • Qu ZY, Zhang YW, Yao CL et al (2015) Chemical constituents from Orobanche cernua Loefling. Biochem Syst Ecol 60:199–203

    CAS  Google Scholar 

  • Rajasekhar D, Subbaraju GV (2000) Jusmicranthin, a new arylnaphthalide lignan from Justicia neesii. Fitoterapia 71:598–599

    CAS  PubMed  Google Scholar 

  • Ramesh C, Ravindranath N, Ram TS et al (2003) Arylnaphthalide lignans from Cleistanthus collinus. Chem Pharm Bull 51:1299–1300

    CAS  PubMed  Google Scholar 

  • Rangkaew N, Suttisri R, Moriyasu M et al (2009) A new arylnaphthalene lignan from Knema furfuracea. Fitoterapia 80:377–379

    CAS  PubMed  Google Scholar 

  • Ren J, Xie YG, Huang YY et al (2017) Seven new lignan glycosides from the branches of Alangium kurzii Craib var. laxifolium. Fitoterapia 121:152–158

    CAS  PubMed  Google Scholar 

  • Ren Y, Lantvit DD, Deng Y et al (2014) Potent cytotoxic arylnaphthalene lignan lactones from Phyllanthus poilanei. J Nat Prod 77:1494–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezanka T, Rezanka P, Sigler K (2009) Glycosides of arylnaphthalene lignans from Acanthus mollis having axial chirality. Phytochemistry 70:1049–1054

    CAS  PubMed  Google Scholar 

  • Sadhu SK, Phattanawasin P, Choudhuri MSK et al (2006) A new lignan from Aphanamixis polystachya. J Nat Prod 60:258–260

    CAS  Google Scholar 

  • Sağlam H, Gözler T, Gözler B (2003) A new prenylated arylnaphthalene lignan from Haplophyllum myrtifolium. Fitoterapia 74:564–569

    PubMed  Google Scholar 

  • Schmidt TJ, Vossing S, Klaes M et al (2007) An aryldihydronaphthalene lignan with a novel type of ring system and further new lignans from Linum perenne L. Planta Med 73:1574–1580

    CAS  PubMed  Google Scholar 

  • Shen CC, Hong KY, Chen J et al (2012) Antioxidant and anti-nitric oxide components from Quercus glauca. Chem Pharm Bull 60:924–929

    CAS  PubMed  Google Scholar 

  • Shi SY, Zhou Q, Peng H et al (2007) Four new constituents from Taraxacum mongolicum. Chin Chem Lett 18:1367–1370

    CAS  Google Scholar 

  • Sianturi J, Harneti D, Darwati D et al (2016) A new (−)-5′,6-dimethoxyisolariciresinol-(3′′,4′′-dimethoxy)-3α-O-β-d-glucopyran oside from the bark of Aglaia eximia (Meliaceae). Nat Prod Res 30:2204–2208

    CAS  PubMed  Google Scholar 

  • Su DM, Wang YH, Yu SS et al (2007) Glucosides from the roots of Capparis tenera. Chem Biodiversity 4:2852–2862

    CAS  Google Scholar 

  • Su GZ, Bai RF, Yu XL et al (2016a) Noralashinol A, a new norlignan from stem barks of Syringa pinnatifolia. Nat Prod Res 30:2149–2153

    CAS  PubMed  Google Scholar 

  • Su GZ, Zhang RF, Yang XY et al (2016b) Lignans from the stem bark of Syringa pinnatifolia. Fitoterapia 114:63–68

    CAS  PubMed  Google Scholar 

  • Sueyoshi E, Liu H, Matsunami K et al (2007) Bridelioside, a new lignan glycoside from Bridelia glauca Bl. f. balansae (Tucht.) Hatusima. J Nat Med 61:468–471

    CAS  Google Scholar 

  • Suh WS, Kim KH, Kim HK et al (2015) Three new lignan derivatives from Lindera glauca (SIEBOLD et ZUCC.) BLUME. Helv Chim Acta 98:1087–1094

    CAS  Google Scholar 

  • Sun J, Gu YF, Su XQ et al (2014) Anti-inflammatory lignanamides from the roots of Solanum melongena L. Fitoterapia 98:110–116

    CAS  PubMed  Google Scholar 

  • Sun YJ, Li ZL, Chen H et al (2011) Three new cytotoxic aryltetralin lignans from Sinopodophyllum emodi. Bioorgan Med Chem Lett 21:3794–3797

    CAS  Google Scholar 

  • Suo MR, Yang JS, Liu QH (2006) Lignan oligosaccharide esters from Eritrichium rupestre. J Nat Prod 69:682–684

    CAS  PubMed  Google Scholar 

  • Susplugas S, Hung NV, Bignon J et al (2005) Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora. J Nat Prod 68:734–738

    CAS  PubMed  Google Scholar 

  • Tanaka T, Ikeda T, Kaku M et al (2004) A new lignan glycoside and phenylethanoid glycosides from Strobilanthes cusia BREMEK. Chem Pharm Bull 52:1242–1245

    CAS  PubMed  Google Scholar 

  • Tang WZ, Ding XB, Xin YZ (2004) A new lignan glycoside from the flower of Castanea mollissima Blume. Acta Pharm Sin 39:531–533

    CAS  Google Scholar 

  • Thanh VTT, Pham VC, Mai HDT et al (2014) Cytotoxic aryltetralin lignans from fruits of Cleistanthus indochinensis. Planta Med 80:695–702

    Google Scholar 

  • Thanh VTT, Pham VC, Mai HDT et al (2012) Cytotoxic lignans from fruits of Cleistanthus indochinensis: synthesis of cleistantoxin derivatives. J Nat Prod 75:1578–1583

    CAS  PubMed  Google Scholar 

  • Thongphasuk P, Suttisri R, Bavovada R et al (2004) Antioxidant lignan glucosides from Strychnos vanprukii. Fitoterapia 75:623–628

    CAS  PubMed  Google Scholar 

  • Tian JM, Hao XJ, He HP (2006) A new lignan and four new lignan glycosides from Mananthes patentiflora. Helv Chim Acta 89:291–298

    CAS  Google Scholar 

  • Tian JM, He HP, Di YT et al (2008) Three new lignan glycosides from Mananthes patentiflora. J Asian Nat Prod Res 10:228–232

    CAS  Google Scholar 

  • Tran TD, Pham NB, Booth R et al (2016) Lignans from the australian endemic plant Austrobaileya scandens. J Nat Prod 79:1514–1523

    CAS  PubMed  Google Scholar 

  • Tsai WJ, Shen CC, Tsai TH et al (2014) Lignans from the aerial parts of Saururus chinensis: isolation, structural characterization, and their effects on platelet aggregation. J Nat Prod 77:125–131

    CAS  PubMed  Google Scholar 

  • Tuchinda P, Kornsakulkarn J, Pohmakotr M et al (2008) Dichapetalin-type triterpenoids and lignans from the aerial parts of Phyllanthus acutissima. J Nat Prod 71:655–663

    CAS  PubMed  Google Scholar 

  • Tuchinda P, Kumkao A, Pohmakotr M et al (2006) Cytotoxic arylnaphthalide lignan glycosides from the aerial parts of Phyllanthus taxodiifolius. Planta Med 72:60–62

    CAS  PubMed  Google Scholar 

  • Van Kiem P, Cuong LCV, Tai BH et al (2016) New lignans from Antidesma hainanensis inhibit NO production in BV2 microglial cells. Chem Pharm Bull 64:1707–1712

    CAS  PubMed  Google Scholar 

  • Vardamides JC, Azebaze AGB, Nkengfack AE et al (2003) Scaphopetalone and scaphopetalumate, a lignan and a triterpene ester from Scaphopetalum thonneri. Phytochemistry 62:647–650

    CAS  PubMed  Google Scholar 

  • Wang BG, Ebel R, Nugroho WN et al (2001) Aglacins A–D, first representatives of a new class of aryltetralin cyclic ether lignans from Aglaia cordata. J Nat Prod 64:1521–1526

    CAS  PubMed  Google Scholar 

  • Wang BG, Ebel R, Wang CY et al (2004) Aglacins I–K, three highly methoxylated lignans from Aglaia cordata. J Nat Prod 67:682–684

    CAS  PubMed  Google Scholar 

  • Wang L, Zhao JF, Zeng XH et al (2009) A novel aryltetralone lignan from Litsea pedunculata. J Asian Nat Prod Res 11:1028–1031

    CAS  PubMed  Google Scholar 

  • Wang YH, Zhang ZK, He HP et al (2006) Lignans and triterpenoids from Cissus repens (Vitaceae). Acta Bot Yunnanica 28:433–437

    CAS  Google Scholar 

  • Wang YX, Zhou L, Wang J et al (2018) Enantiomeric lignans with anti-β-amyloid aggregation activity from the twigs and leaves of Pithecellobium clypearia Benth. Bioorg Chem 77:579–585

    CAS  PubMed  Google Scholar 

  • Wangteeraprasert R, Likhitwitayawuid K (2009) Lignans and a sesquiterpene glucoside from Carissa carandas stem. Helv Chim Acta 92:1217–1223

    CAS  Google Scholar 

  • Ward RS (1999) Lignans, neolignans and related compounds. Nat Prod Rep 16:75–96

    CAS  Google Scholar 

  • Wei CY, Wang SW, Ye JW et al (2018) New anti-inflammatory aporphine and lignan derivatives from the root wood of Hernandia nymphaeifolia. Molecules 23:2286

    PubMed Central  Google Scholar 

  • Wei H, He CN, Peng Y et al (2012a) Two new aryltetralin lignans from the roots of Dolomiaea souliei. Molecules 17:5544–5549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei WX, Li XR, Wang KW et al (2012b) Lignans with anti-hepatitis B virus activities from Phyllanthus niruri L. Phytother Res 26:964–968

    CAS  PubMed  Google Scholar 

  • Weng JR, Ko HH, Yeh TL et al (2004) Two new arylnaphthalide lignans and antiplatelet constituents from Justicia procumbens. Arch Pharm Pharm Med Chem 337:207–212

    CAS  Google Scholar 

  • Woo SY, Hoshino S, Wong CP et al (2018) Lignans with melanogenesis effects from Premna serratifolia wood. Fitoterapia 133:35–42

    PubMed  Google Scholar 

  • Wu J, Zhang S, Li QX et al (2004) Two new cyclolignan glycosides from Acanthus ilicifolius. Z Naturforsch B 59:341–344

    Google Scholar 

  • Wu SJ, Wu TS (2006) Cytotoxic arylnaphthalene lignans from Phyllanthus oligospermus. Chem Pharm Bull 54:1223–1225

    CAS  PubMed  Google Scholar 

  • Wu WW, Liao LP, Wang XJ et al (2012) A new lignan glycoside procumbenoside E from Justicia procumbens L. Chin J Pharm 43:669–672

    CAS  Google Scholar 

  • Wu YY, Huang XX, Wu J et al (2015) A new cyclolignan glycoside from the tubers of Pinellia ternata. J Asian Nat Prod Res 17:1097–1103

    CAS  PubMed  Google Scholar 

  • Xiao K, Xuan LJ, Xu YM et al (2002) Constituents from Polygonum cuspidatum. Chem Pharm Bull 50:605–608

    CAS  PubMed  Google Scholar 

  • Xu S, Li N, Ning MM et al (2006) Bioactive Compounds from Peperomia pellucida. J Nat Prod 69:247–250

    CAS  PubMed  Google Scholar 

  • Yamasaki T, Kawabata T, Masuoka C et al (2008) Two new lignan glucosides from the fruit of Vitex cannabifolia. J Nat Med 62:47–51

    CAS  PubMed  Google Scholar 

  • Yang BH, Zhang WD, Liu RH et al (2005) Lignans from bark of Larix olgensis var. koreana. J Nat Prod 68:1175–1179

    CAS  PubMed  Google Scholar 

  • Yang Kuo LM, Zhang LJ, Huang HT et al (2013) Antioxidant lignans and chromone glycosides from Eurya japonica. J Nat Prod 76:580–587

    PubMed  Google Scholar 

  • Yang MH, Wu J, Cheng F et al (2006) Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from Justicia procumbens. Magn Reson Chem 44:727–730

    CAS  PubMed  Google Scholar 

  • Yang SY, Lee SH, Tai BH et al (2018) Antioxidant and anti-osteoporosis activities of chemical constituents of the stems of Zanthoxylum piperitum. Molecules 23:457

    PubMed Central  Google Scholar 

  • Yang XW, He HP, Du ZZ et al (2009) Tarennanosides A–H, eight new lignan glucosides from Tarenna attenuata and their protective effect on H2O2-induced impairment in PC12 cells. Chem Biodiversity 6:540–550

    CAS  Google Scholar 

  • Yang YN, Liu ZZ, Feng ZM et al (2012) Lignans from the root of Rhodiola crenulata. J Agric Food Chem 60:964–972

    CAS  PubMed  Google Scholar 

  • Yeon JH, Cheng L, He QQ et al (2014) A lignin glycoside and a nortriterpenoid from Kadsura coccinea. Chin J Nat Med 12:0782–0785

    CAS  Google Scholar 

  • Yu S, Lv JJ, Zhao JQ et al (2016) New cytotoxic lignan glycosides from Phyllanthus glaucus. Nat Prod Res 30:419–425

    CAS  PubMed  Google Scholar 

  • Yu Y, Feng XL, Gao H et al (2012) Chemical constituents from the fruits of Gardenia jasminoides Ellis. Fitoterapia 83:563–567

    CAS  PubMed  Google Scholar 

  • Yu Y, Gao H, Dai Y et al (2010) A new lignan from Gardenia jasminoides. Chin Tradit Herb Drugs 41:509–514

    CAS  Google Scholar 

  • Zare K, Movafeghi A, Mohammadi SA et al (2014) New phenolics from Linum mucronatum subsp. orientale. Bioimpacts 4:117–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng XB, Wang H, Gong ZQ et al (2015) Antimicrobial and cytotoxic phenolics and phenolic glycosides from Sargentodoxa cuneata. Fitoterapia 101:153–161

    CAS  PubMed  Google Scholar 

  • Zhang B, Huang RZ, Hua J et al (2016a) Antitumor lignanamides from the aerial parts of Corydalis saxicola. Phytomedicine 23:1599–1609

    CAS  PubMed  Google Scholar 

  • Zhang CF, Zhou J, Yang JZ et al (2016b) Three new lignanosides from the aerial parts of Lespedeza cuneata. J Asian Nat Prod Res 18:913–920

    CAS  PubMed  Google Scholar 

  • Zhang HJ, Rumschlag-Booms E, Guan YF et al (2017a) Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry 136:94–100

    CAS  PubMed  Google Scholar 

  • Zhang J, Chen JJ, Liang ZZ et al (2014) New lignans and their biological activities. Chem Biodivers 11:1–54

    PubMed  Google Scholar 

  • Zhang JL, Yan RJ, Yu N et al (2018a) A new caffeic acid tetramer from the Dracocephalum moldavica L. Nat Prod Res 32:370–373

    CAS  PubMed  Google Scholar 

  • Zhang JX, Guan SH, Feng RH et al (2013) Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. J Nat Prod 76:51–58

    CAS  PubMed  Google Scholar 

  • Zhang RF, Feng X, Su GZ et al (2017) Noralashinol B, a norlignan with cytotoxicity from stem barks of Syringa pinnatifolia. J Asian Nat Prod Res 19:416–422

    CAS  PubMed  Google Scholar 

  • Zhang YJ, Litaudon M, Bousserouel H et al (2007) Sesquiterpenoids and Cytotoxic Lignans from the Bark of Libocedrus chevalieri. J Nat Prod 70:1368–1370

    CAS  PubMed  Google Scholar 

  • Zhang YJ, Wang K, Chen HC et al (2018) Anti-inflammatory lignans and phenylethanoid glycosides from the root of Isodon ternifolius (D. Don) Kudo. Phytochemistry 153:36–47

    CAS  PubMed  Google Scholar 

  • Zhang YL, Bao FK, Hu JJ et al (2007) Antibacterial lignans and triterpenoids from Rostellularia procumbens. Planta Med 73:1596–1599

    CAS  PubMed  Google Scholar 

  • Zhang ZZ, Ownby S, Wang P et al (2010) New phenolic compounds from Liatris elegans. Nat Prod Res 24:1079–1085

    CAS  PubMed  Google Scholar 

  • Zhao CQ, Cao W, Nagatsu A et al (2001a) Three new glycosides from Sinopodophyllum emodi (Wall.) Ying. Chem Pharm Bull 49:1474–1476

    CAS  PubMed  Google Scholar 

  • Zhao CQ, Huang J, Nagatsu A et al (2001b) Two New Podophyllotoxin Glucosides from Sinopodophyllum emodi (WALL.) YING. Chem Pharm Bull 49:773–775

    CAS  PubMed  Google Scholar 

  • Zhao CQ, Nagatsu A, Hatano K et al (2003) New lignan glycosides from Chinese medicinal plant, Sinopodophillum emodi. Chem Pharm Bull 51:255–261

    CAS  PubMed  Google Scholar 

  • Zhao CQ, Zhu YY, Chen SY et al (2011) Lignan glucoside from Sinopodophyllum emodi and its cytotoxic activity. Chin Chem Lett 22:181–184

    CAS  Google Scholar 

  • Zhao JQ, Wang D, Wang YM et al (2014) Highly oxygenated limonoids and lignans from Phyllanthus flexuosus. Nat Prod Bioprospect 4:233–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng CJ, Huang BK, Han T et al (2009) Nitric oxide scavenging lignans from Vitex negundo seeds. J Nat Prod 72:1627–1630

    CAS  PubMed  Google Scholar 

  • Zheng CJ, Zhang XW, Han T et al (2014) Anti-inflammatory and anti-osteoporotic lignans from Vitex negundo seeds. Fitoterapia 93:31–38

    CAS  PubMed  Google Scholar 

  • Zhou J, Li CJ, Yang JZ et al (2016) Phenylpropanoid and lignan glycosides from the aerial parts of Lespedeza cuneata. Phytochemistry 121:58–64

    CAS  PubMed  Google Scholar 

  • Zhou Y, Jin M, Jin CS et al (2018) A new aryldihydronaphthalene-type lignan and other metabolites with potential anti-inflammatory activities from Corispermum mongolicum Iljin. Nat Prod Res 2018:1–8

    Google Scholar 

  • Zhou YB, Wang JH, Li XM et al (2008) Two new 2-phenylethyl alcohol derivatives and one new lignan derivative from the root of Ilex pubescens. Helv Chim Acta 91:1244–1250

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the authors of all the references cited herein for their valuable contributions. This project was financially supported by the Natural Science Foundation of China (Grants 81173505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqi Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liang, Z., Li, J. et al. Update on naturally occurring novel arylnaphthalenes from plants. Phytochem Rev 19, 337–403 (2020). https://doi.org/10.1007/s11101-020-09668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-020-09668-7

Keywords

Navigation