Skip to main content
Log in

Self-organization in aqueous solutions of thermosensitive star-shaped and linear gradient copolymers of 2-ethyl-2-oxazoline and 2-isopropyl-2-oxazoline

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

A Correction to this article was published on 15 April 2020

This article has been updated

Abstract

Thermosensitive star-shaped eight-arm poly-2-alkyl-2-oxazolines (M = 21,000 g mol−1) was synthesized. The arms were gradient copolymers of 2-ethyl-2-oxazoline (EtOx) and 2-isopropyl-2-oxazoline (iPrOx). The more hydrophilic EtOx units prevailed near the calix[8]arene core. For comparison, model linear gradient copolymer (M = 3800 g mol−1) was investigated. For both polymers, comonomer molar ratio was 1/1. The aqueous solutions of copolymers were studied by light scattering and turbidimetry. Self-organization of linear and star-shaped molecules in solution was different, but the phase separation temperatures for these copolymers coincided. In order to find out the influence of the distribution of EtOx and iPrOx units along the arms on the behavior of star-shaped polyalkyloxazolines, the behavior of investigated stars was compared with that for stars, whose arms was block copolymers poly-2-isopropyl-2-oxazoline and poly-2-ethyl-2-oxazoline. It was shown that the phase separation temperature for gradient copolymer solutions was higher than one for block copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 15 April 2020

    The author noticed that the published paper contained error. Unfortunately, the author name “Tatyana Kirila” of the article was repeated twice. Given in this paper is the correct list of authors.

References

  1. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. https://doi.org/10.1016/j.progpolymsci.2004.08.003

    Article  CAS  Google Scholar 

  2. Kanazawa H (2004) Temperature-responsive polymers for liquid-phase separations. Anal Bioanal Chem 378:46–48. https://doi.org/10.1007/s00216-003-2336-9

    Article  CAS  PubMed  Google Scholar 

  3. Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers from fundamental studies to applications. Colloid Polym Sci 287:627–643. https://doi.org/10.1007/s00396-009-2028-x

    Article  CAS  Google Scholar 

  4. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23. https://doi.org/10.1016/j.progpolymsci.2009.10.002

    Article  CAS  Google Scholar 

  5. Reif M, Jordan R (2011) α,ω-Functionalized poly(2-oxazoline)s bearing hydroxyl and amino functions. Macromol Chem Phys 212:1815–1824. https://doi.org/10.1002/macp.201100276

    Article  CAS  Google Scholar 

  6. Hoogenboom R, Schlaad H (2011) Bionspired poly(2-oxazoline)s. Polymers 3:467–488. https://doi.org/10.3390/polym3010467

    Article  CAS  Google Scholar 

  7. Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese FM (2011) Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug Chem 22:976–986. https://doi.org/10.1021/bc200049d

    Article  CAS  PubMed  Google Scholar 

  8. Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M (2012) Poly(2-oxazoline)s--are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun 33:1648–1662. https://doi.org/10.1002/marc.201200453

    Article  CAS  PubMed  Google Scholar 

  9. Rossegger E, Schenk V, Wiesbrock F (2013) Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers 5:956–1011. https://doi.org/10.3390/polym5030956

    Article  CAS  Google Scholar 

  10. Hoogenboom R, Fijten MW, Thijs HM, van Lankvelt BM, Schubert US (2005) Microwave-assisted synthesis and properties of a series of poly(2-alkyl-2-oxazoline)s. Des Monomers Polym 8:659–671. https://doi.org/10.1163/156855505774597704

    Article  CAS  Google Scholar 

  11. Guillerm B, Monge S, Lapinte V, Robin J-J (2012) How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol Rapid Commun 33:1600–1612. https://doi.org/10.1002/marc.201200266

    Article  CAS  PubMed  Google Scholar 

  12. Lava K, Verbraeken B, Hoogenboom R (2015) Poly(2-oxazoline)s and click chemistry: a versatile toolbox toward multi-functional polymers. Eur Polym J 65:98–111. https://doi.org/10.1016/j.eurpolymj.2015.01.014

    Article  CAS  Google Scholar 

  13. Park J-S, Kataoka K (2007) Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization. Macromolecules 40:3599–3609. https://doi.org/10.1021/ma0701181

    Article  CAS  Google Scholar 

  14. Park J-S, Kataoka K (2006) Precise control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomers. Macromolecules 39:6622–6630. https://doi.org/10.1021/ma0605548

    Article  CAS  Google Scholar 

  15. Glassner M, Lava K, de la Rosa VR, Hoogenboom R (2014) Tuning the LCST of poly (2-cyclopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline. J Polym Sci A Polym Chem 52:3118–3122. https://doi.org/10.1002/pola.27364

    Article  CAS  Google Scholar 

  16. Zhang N, Luxenhofer R, Jordan R (2012) Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: modulation of the cloud point by random and block copolymer pendant chains. Macromol Chem Phys 213:1963–1696. https://doi.org/10.1002/macp.201200261

    Article  CAS  Google Scholar 

  17. Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119. https://doi.org/10.1021/ma300969w

    Article  CAS  Google Scholar 

  18. Schlaad H, Diehl C, Gress A, Meyer M, Levent Demirel A, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525. https://doi.org/10.1002/marc.200900683

    Article  CAS  PubMed  Google Scholar 

  19. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243. https://doi.org/10.1039/c3cs35499g

    Article  CAS  PubMed  Google Scholar 

  20. Wei M, Gao Y, Li X, Sepre X (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143. https://doi.org/10.1039/C6PY01585A

    Article  CAS  Google Scholar 

  21. Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci A Polym Chem 51:2980–2994. https://doi.org/10.1002/pola.26696

    Article  CAS  Google Scholar 

  22. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures--synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973. https://doi.org/10.1021/cr900068q

    Article  CAS  PubMed  Google Scholar 

  23. Filippov AP, Belyaeva EV, Tarabukina EB, Amirova AI (2011) Behavior of hyperbranched polymers in solutions. Polym Sci C 53:107–117. https://doi.org/10.1134/S1811238211060014

    Article  CAS  Google Scholar 

  24. Ishizu K, Tsubaki K, Mori A, Uchida S (2003) Architecture of nanostructured polymers. Prog Polym Sci 28:27–54. https://doi.org/10.1016/S0079-6700(02)00025-4

    Article  CAS  Google Scholar 

  25. Chen Y, Wang L, Yu H, Zhao Y, Sun R, Jing G, Huang J, Khalid H, Abbasi NM, Akram M (2015) Synthesis and application of polyethylene-based functionalized hyperbranched polymers. Prog Polym Sci 45:23–43. https://doi.org/10.1016/j.progpolymsci.2015.01.004

    Article  CAS  Google Scholar 

  26. Sheiko SS, Sumerlin BS, Matyjaszewski M (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759–785. https://doi.org/10.1016/j.progpolymsci.2008.05.001

    Article  CAS  Google Scholar 

  27. Schmalz A, Hanisch M, Schmalz H, Müller AHE (2010) Double stimuli-responsive behavior of linear and star-shaped poly(N,N-diethylaminoethyl methacrylate) in aqueous solution. Polymer 51:1213–1217. https://doi.org/10.1016/j.polymer.2009.11.023

    Article  CAS  Google Scholar 

  28. Ma L, Liu R, Tan J, Wang D, Jin X, Kang H, Wu M, Huang Y (2010) Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly(N,N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir 26:8697–8703. https://doi.org/10.1021/la904431z

    Article  CAS  PubMed  Google Scholar 

  29. Sui K, Zhao X, Wu Z, Xia Y, Liang H, Li Y (2012) Synthesis, rapid responsive thickening, and self-assembly of brush copolymer poly(ethylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate) in aqueous solutions. Langmuir 28:153–160. https://doi.org/10.1021/la2031472

    Article  CAS  PubMed  Google Scholar 

  30. Kurlykin MP, Bursian AE, Tenkovtsev AV (2017) Synthesis of comb-shaped polymers via controlled cationic polymerization of oxazolines with polyester-type macroinitiator. Polym Sci Ser B 59:157–163. https://doi.org/10.1134/S156009041702004X

    Article  CAS  Google Scholar 

  31. Kudryavtseva AA, Kurlykin MP, Tarabukina EB, Tenkovtsev AV, Filippov AP (2017) Behavior of thermosensitive graft copolymer with aromatic polyester backbone and poly-2-ethyl-2-oxazoline side chains in aqueous solutions. Int J Polym Anal Charact 22:526–533. https://doi.org/10.1080/1023666X.2017.1342188

    Article  CAS  Google Scholar 

  32. Iatridi Z, Tsitsilianis C (2011) Water-soluble stimuli responsive star-shaped segmented macromolecules. Polymers 3:1911–1933. https://doi.org/10.3390/polym3041911

    Article  CAS  Google Scholar 

  33. Kowalczuk A, Kronek J, Bosowska K, Trzebicka B, Dworak A (2011) Star poly(2-ethyl-2-oxazoline)s - synthesis and thermosensitivity. Polym Int 60:1001–1009. https://doi.org/10.1002/pi.3103

    Article  CAS  Google Scholar 

  34. Lambermont-Thijs HML, Fijten MWM, Schubert US, Hoogenboom R (2011) Star-shaped poly(2-oxazoline)s by dendrimer endcapping. Aust J Chem 64:1026–1032. https://doi.org/10.1071/CH11128

    Article  CAS  Google Scholar 

  35. Pereira G, Huin C, Morariu S, Bennevault-Celton V, Guegan P (2012) Synthesis of poly(2-methyl-2-oxazoline) star polymers with a β-cyclodextrin core. Aust J Chem 65:1145–1155. https://doi.org/10.1071/CH12232

    Article  CAS  Google Scholar 

  36. Amirova AI, Dudkina MM, Tenkovtsev AV, Filippov AP (2015) Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions. Colloid Polym Sci 293:239–248. https://doi.org/10.1007/s00396-014-3402-x

    Article  CAS  Google Scholar 

  37. Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2016) The effect of arm number and solution concentration on phase separation of thermosensitive poly(2-isopropyl-2-oxazoline) stars in aqueous solutions. Colloid Polym Sci 294:947–956. https://doi.org/10.1007/s00396-016-3853-3

    Article  CAS  Google Scholar 

  38. Amirova AI, Golub OV, Kirila TU, Razina AB, Tenkovtsev AV, Filippov AP (2017) Influence of arm length on aqueous solution behaviorof thermosensitive poly(2-isopropyl-2-oxazoline) stars. Colloid Polym Sci 295:117–124. https://doi.org/10.1007/s00396-016-3984-6

    Article  CAS  Google Scholar 

  39. Amirova A, Rodchenko S, Makhmudova Z, Cherkaev G, Milenin S, Tatarinova E, Kurlykin M, Tenkovtsev A, Filippov A (2017) Synthesis, characterization, and investigation of thermosensitive star-shaped poly(2-isopropyl-2-oxazolines) based on carbosilane dendrimers. Macromol Chem Phys 218:1600387. https://doi.org/10.1002/macp.201600387

    Article  CAS  Google Scholar 

  40. Sezonenko T, Qiu X-P, Winnik FM, Sato T (2019) Dehydration, micellization, and phase separation of thermosensitive polyoxazoline star block copolymers in aqueous solution. Macromolecules 52:935–944. https://doi.org/10.1021/acs.macromol.8b02528

    Article  CAS  Google Scholar 

  41. Kirila TU, Kurlykin MP, Tenkovtsev AV, Filippov AP (2017) Behavior of aqueous solutions of thermosensitive starlike polyalkyloxazolines with different arm structures. Polym Sci A 59:826–838. https://doi.org/10.1134/S0965545X17060050

    Article  CAS  Google Scholar 

  42. Smirnova AV, Kirila TU, Kurlykin MP, Tenkovtsev AV, Filippov AP (2017) Behavior of aqueous solutions of polymer star with block copolymer poly(2-ethyl-2-oxazoline) and poly(2-isopropyl-2-oxazoline) arms. Int J Polym Anal Charact 22:677–684. https://doi.org/10.1080/1023666X.2017.1366196

    Article  CAS  Google Scholar 

  43. Kirila TU, Kurlykin MP, Tenkovtsev AV, Filippov AP (2018) Behavior of a thermosensitive star-shaped polymer with polyethyloxazoline-block-polyisopropyloxazoline copolymer arms. Polym Sci A 60:249–259. https://doi.org/10.1134/S0965545X18030069

    Article  CAS  Google Scholar 

  44. Witte H, Seeliger W (1974) Cyclische imidsäureester aus nitrilen und aminoalkoholen. Lieb Ann 1974:996–1009. https://doi.org/10.1002/jlac.197419740615

    Article  Google Scholar 

  45. Tenkovtsev AV, Trofimov AE, Scherbinskaya LI (2012) Thermoresponsive star-shaped poly(2-isopropyl-2-oxazolines) based on octa-tert-butylcalix[8]arene. Polym Sci B 54:142–148. https://doi.org/10.1134/S1560090412030098

    Article  CAS  Google Scholar 

  46. Allen BJ, Elsea GM, Keller KP, Kinder HD (1977) Quantitative hydrolysis-gas chromatographic methods for the determination of selected acids and glycols in polyesters. Anal Chem 49:741–743. https://doi.org/10.1021/ac50014a019

    Article  CAS  Google Scholar 

  47. Gubarev AS, Monnery BD, Lezov AA, Sedlacek O, Tsvetkov NV, Hoogenboom R, Filippov SK (2018) Conformational properties of biocompatible poly(2-ethyl-2-oxazoline)s in phosphate buffered saline. Polym Chem 9:2232–2237. https://doi.org/10.1039/C8PY00255J

    Article  CAS  Google Scholar 

  48. Grube M, Leiske MN, Schubert US, Nischang I (2018) POx as an alternative to PEG? A hydrodynamic and light scattering study. Macromolecules 51:1905–1916. https://doi.org/10.1021/acs.macromol.7b02665

    Article  CAS  Google Scholar 

  49. Domnina NS, Sergeeva OY, Koroleva AN, Rakitina OV, Dobrun LA, Filippov SK, Mikhailova ME, Lezov AV (2010) Molecular properties of conjugates formed by synthetic hydrophilic polymers and sterically hindered phenols. Polym Sci A 52:900–906. https://doi.org/10.1134/S0965545X1009004X

    Article  Google Scholar 

  50. Steinschulte AA, Schulte B, Rütten S, Eckert T, Okuda J, Möller M, Schneider S, Borisov OV, Plamper FA (2014) Effects of architecture on the stability of thermosensitive unimolecular micelles. Phys Chem Chem Phys 16:4917–4932. https://doi.org/10.1039/C3CP54707H

    Article  CAS  PubMed  Google Scholar 

  51. Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis CM (2012) Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid Polym Sci 290:385–400. https://doi.org/10.1007/s00396-011-2564-z

    Article  CAS  Google Scholar 

  52. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343. https://doi.org/10.1016/j.progpolymsci.2007.07.001

    Article  CAS  Google Scholar 

  53. Konradi R, Acikgoz C, Textor M (2012) Polyoxazolines for nonfouling surface coatings – a direct comparison to the gold standard PEG. Macromol Rapid Commun 33:1663–1676. https://doi.org/10.1002/marc.201200422

    Article  CAS  PubMed  Google Scholar 

  54. Weber C, Hoogenboom R, Schubert US (2012) Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci 37:686–714. https://doi.org/10.1016/j.progpolymsci.2011.10.002

    Article  CAS  Google Scholar 

  55. Trinh LT, Lambermont-Thijs HM, Schubert US, Hoogenboom R, Kjoniksen AL (2012) Thermoresponsive poly(2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior. Macromolecules 45:4337–4345. https://doi.org/10.1021/ma300570j

    Article  CAS  Google Scholar 

  56. Steinschulte AA, Schulte B, Erberich M, Borisov OV, Plamper FA (2012) Unimolecular Janus micelles by microenvironment-induced, internal complexation. ACS Macro Lett 1(4):504–507. https://doi.org/10.1021/mz300043s

    Article  CAS  Google Scholar 

  57. Kratochvil P (1987) Classical light scattering from polymer solution. Elsevier, Amsterdam

    Google Scholar 

  58. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

  59. Kirile TU, Tobolina AI, Elkina AA, Kurlykin MP, Tenkovtsev AV, Filippov AP (2018) Self-assembly processes in aqueous solutions of heat-sensitive star-shaped poly-2-ethyl-2-oxazoline. Fibre Chem 50:248–251. https://doi.org/10.1007/s10692-018-9970-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tenkovtsev A.V. thanks the Russian Ministry of Education and Science (No 14.W03.31.0022 Megagrant of the Government of the Russian Federation).

Funding

Financial support was provided by the Russian Foundation for Basic Research (project No 18-33-00153-mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Kirila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The author noticed that the published paper contained error. Unfortunately, the author name “Tatyana Kirila” of the article was repeated twice. Given in this paper is the correct list of authors.

Electronic supplementary material

ESM 1

(PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirila, T., Smirnova, A., Kurlykin, M. et al. Self-organization in aqueous solutions of thermosensitive star-shaped and linear gradient copolymers of 2-ethyl-2-oxazoline and 2-isopropyl-2-oxazoline. Colloid Polym Sci 298, 535–546 (2020). https://doi.org/10.1007/s00396-020-04638-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04638-z

Keywords

Navigation