Skip to main content
Log in

On-demand production of hydrogen by reacting porous silicon nanowires with water

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

On-demand hydrogen generation is desired for fuel cells, energy storage, and clean energy applications. Silicon nanowires (SiNWs) and nanoparticles (SiNPs) have been reported to generate hydrogen by reacting with water, but these processes usually require external assistance, such as light, electricity or catalysts. Herein, we demonstrate that a porous SiNWs array, which is fabricated via the metal-assisted anodic etching (MAAE) method, reacts with water under ambient and dark conditions without any energy inputs. The reaction between the SiNWs and water generates hydrogen at a rate that is about ten times faster than the reported rates of other Si nanostructures. Two possible sources of enhancement are discussed: SiNWs maintain their high specific surface area as they don’t agglomerate, and the intrinsic strain of the nanowires promotes the reactivity. Moreover, the porous SiNWs array is portable, reusable, and environmentally friendly, yielding a promising route to produce hydrogen in a distributed manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, J. A. Sustainable hydrogen production. Science2004, 305, 972–974.

    Article  CAS  Google Scholar 

  2. Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy2008, 36, 4356–4362.

    Article  Google Scholar 

  3. Jain, I. P. Hydrogen the fuel for 21st century. Int. J. Hydrog. Energy2009, 34, 7368–7378.

    Article  CAS  Google Scholar 

  4. Sharma, S.; Ghoshal, S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sust. Energ. Rev.2015, 43, 1151–1158.

    Article  CAS  Google Scholar 

  5. Brandon, N. P.; Kurban, Z. Clean energy and the hydrogen economy. Philos. Trans. Roy. Soc. A2017, 375, 20160400.

    Article  Google Scholar 

  6. Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci.2019, 12, 463–491.

    Article  CAS  Google Scholar 

  7. Winter, C. J. Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. Int. J. Hydrog. Energy2009, 34, S1–S52.

    Article  CAS  Google Scholar 

  8. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today2009, 139, 244–260.

    Article  CAS  Google Scholar 

  9. Erogbogbo, F.; Lin, T.; Tucciarone, P. M.; LaJoie, K. M.; Lai, L.; Patki, G. D.; Prasad, P. N.; Swihart, M. T. On-demand hydrogen generation using nanosilicon: Splitting water without light, heat, or electricity. Nano Lett.2013, 13, 451–456.

    Article  CAS  Google Scholar 

  10. Kobayashi, Y.; Matsuda, S.; Imamura, K.; Kobayashi, H. Hydrogen generation by reaction of Si nanopowder with neutral water. J. Nanopart. Res.2017, 19, 176.

    Article  Google Scholar 

  11. Goller, B.; Kovalev, D.; Sreseli, O. Nanosilicon in water as a source of hydrogen: Size and pH matter. Nanotechnology2011, 22, 305402.

    Article  Google Scholar 

  12. Bahruji, H.; Bowker, M.; Davies, P. R. Photoactivated reaction of water with silicon nanoparticles. Int. J. Hydrog. Energy2009, 34, 8504–8510.

    Article  CAS  Google Scholar 

  13. Zhan, C. Y.; Chu, P. K.; Ren, D.; Xin, Y. C.; Huo, K. F.; Zou, Y.; Huang, N. K. Release of hydrogen during transformation from porous silicon to silicon oxide at normal temperature. Int. J. Hydrog. Energy2011, 36, 4513–4517.

    Article  CAS  Google Scholar 

  14. Weisse, J. M.; Lee, C. H.; Kim, D. R.; Cai, L. L.; Rao, P. M.; Zheng, X. L. Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. Nano Lett.2013, 13, 4362–4368.

    Article  CAS  Google Scholar 

  15. Weisse, J. M.; Reifenberg, J. P.; Miller, L. M.; Scullin, M. L. Ultralong silicon nanostructures, and methods of forming and transferring the same. U.S. Patent 9691849, June 27, 2017.

  16. Lai, C. Q.; Zheng, W.; Choi, W. K.; Thompson, C. V. Metal assisted anodic etching of silicon. Nanoscale2015, 7, 11123–11134.

    Article  CAS  Google Scholar 

  17. Sailor, M. J. Porous Silicon in Practice: Preparation, Characterization and Applications; Wiley-VCH: Weinheim, 2012.

    Google Scholar 

  18. Ramage, J. Energy, A Guidebook; Oxford University Press: New York, USA, 1983.

    Google Scholar 

  19. Unagami, T. Intrinsic stress in porous silicon layers formed by anodization in HF solution. J. Electrochem. Soc.1997, 144, 1835.

    Article  CAS  Google Scholar 

  20. Weisse, J. M.; Marconnet, A. M.; Kim, D. R.; Rao, P. M.; Panzer, M. A.; Goodson, K. E.; Zheng, X. L. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res. Lett.2012, 7, 554.

    Article  Google Scholar 

  21. Haynes, C. L.; van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B2001, 105, 5599–5611.

    Article  CAS  Google Scholar 

  22. Li, X.; Bohn, P. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett.2000, 77, 2572–2574.

    Article  CAS  Google Scholar 

  23. Cheng, S. L.; Chung, C. H.; Lee, H. C. A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates. J. Electrochem. Soc.2008, 155, D711–D714.

    Article  CAS  Google Scholar 

  24. Dai, F.; Zai, J. T.; Yi, R.; Gordin, M. L.; Sohn, H.; Chen, S. R.; Wang, D. H. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat. Commun.2014, 5, 3605.

    Article  Google Scholar 

  25. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res.2013, 6, 174–181.

    Article  CAS  Google Scholar 

  26. Ogata, Y. H.; Tsuboi, T.; Sakka, T.; Naito, S. Oxidation of porous silicon in dry and wet environments under mild temperature conditions. J. Porous Mater.2000, 7, 63–66.

    Article  CAS  Google Scholar 

  27. Lee, C. H.; Kim, J. H.; Zou, C. Y.; Cho, I. S.; Weisse, J. M.; Nemeth, W.; Wang, Q.; van Duin, A. C. T.; Kim, T. S.; Zheng, X. L. Peel-and-stick: Mechanism study for efficient fabrication of flexible/transparent thin-film electronics. Sci. Rep.2013, 3, 2917.

    Article  Google Scholar 

  28. Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M. Growth of native oxide on a silicon surface. J. Appl. Phys.1990, 68, 1272–1281.

    Article  CAS  Google Scholar 

  29. Sirotti, F.; De Santis, M.; Rossi, G. Synchrotron-radiation photoemission and X-ray absorption of Fe silicides. Phys. Rev. B1993, 48, 8299–8306.

    Article  CAS  Google Scholar 

  30. Mazzoldi, P.; Carnera, A.; Caccavale, F.; Favaro, M. L.; Boscolo-Boscoletto, A.; Granozzi, G.; Bertoncello, R.; Battaglin, G. N and Ar ion-implantation effects in SiO2 films on Si single-crystal substrates. J. Appl. Phys.1991, 70, 3528–3536.

    Article  CAS  Google Scholar 

  31. Liao, W. S.; Lee, S. C. Water-induced room-temperature oxidation of Si-H and -Si-Si-bonds in silicon oxide. J. Appl. Phys.1996, 80, 1171–1176.

    Article  CAS  Google Scholar 

  32. Weisse, J. M. Fabrication and characterization of vertical silicon nanowire arrays: A promising building block for thermoelectric devices. Ph.D. Dissertation, Stanford University, CA, USA, 2013.

    Google Scholar 

  33. de la Peña, F.; Prestat, E.; Fauske, V. T.; Burdet, P.; Jokubauskas, P.; Nord, M.; Ostasevicius, T.; MacArthur, K. E.; Sarahan, M.; Johnstone, D. N. et al. Hyperspy/Hyperspy: Hyperspy V1.5.2 [Online]. https://doi.org/10.5281/zenodo.3396791 (accessed Sep 6, 2019).

Download references

Acknowledgements

The authors acknowledge the support of the California Energy Commission, Stanford Natural Gas Initiative, and Stanford Hydrogen Focus Group. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Zheng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, R., Jiang, Y., Zeng, Y. et al. On-demand production of hydrogen by reacting porous silicon nanowires with water. Nano Res. 13, 1459–1464 (2020). https://doi.org/10.1007/s12274-020-2734-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2734-8

Keywords

Navigation