Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T07:43:10.345Z Has data issue: false hasContentIssue false

Crystal structure of cloxacillin sodium monohydrate, C19H17ClN3O5SNa(H2O)

Published online by Cambridge University Press:  02 September 2019

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, USA North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of cloxacillin sodium monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Cloxacillin sodium monohydrate crystallizes in space group P212121 (#19) with a = 7.989 36(12), b = 10.918 09(10), c = 25.559 3(6) Å, V = 2229.50(5) Å3, and Z = 4. The crystal structure is characterized by corner-sharing chains of irregular NaO5 polyhedra along the a-axis. The carboxylate group chelates to the Na and bridges two Na cations. The coordination sphere is completed by the water molecule and a carbonyl group. The Na–O bonds are mostly ionic but have some covalent character. The bond valence sum of the Na is 1.14. The water molecule acts as a donor to the carboxylate group and a carbonyl oxygen. It is an acceptor in C–H⋯O hydrogen bonds from a methyl group and a ring carbon. The crystal structure of cloxacillin sodium monohydrate is very similar to that of the fluorinated derivative (CSD Refcode BEBCAM), reflecting the similarity of the lattice parameters. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Copyediting notes have been removed from the text. An erratum detailing this change has also been published (doi:10.1017/S0885715619000939).

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Blanpain, P. C. and Durant, F. V. (1976a). “3 (2-chlorophenyl)-5-methyl-4-isoxazolyl-penicillin methyl ester (cloxacillin methyl ester): C20H20C1N3O5S,” Cryst. Struct. Commun. 5, 8388.Google Scholar
Blanpain, P. C. and Durant, F. V. (1976b). “3 (2-chlorophenyl)-5-methyl-4-isoxazolyl-penicillin sulfoxide (cloxacillin sulfoxide) dioxane monohydrate, C19H18ClO6N3S. C4H8O2. H2O,” Cryst. Struct. Commun. 5, 8994.Google Scholar
Blanpain, P. C. and Durant, F. V. (1977). “3 (2, 6-dichlorophenyl)-5-methyl-4-isoxazolyl penicillin methyl ester (dicloxacillin methyl ester), C20H19Cl2N3O5S,” Cryst. Struct. Commun. 6, 711716.Google Scholar
Blanpain, P. C., Nagy, J. B., Laurent, G. H., and Durant, F. V. (1980). “A multifaceted approach to the study of the side-chain conformation in β-lactamase-resistant penicillins,” J. Med. Chem. 23, 12831292.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Dassault Systèmes (2019). Materials Studio 2019 (BIOVIA, San Diego, CA).Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: A program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171179.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta. 44, 129138.Google Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.Google Scholar
MDI (2018). Jade 9.8 (Materials Data Inc., Livermore, CA).Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Cheminf. 3, 33.Google Scholar
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent gaussian basis sets of Triple-Zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 74, 239252.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: Commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction, Inc. (2018). Spartan ’18 Version 1.2.0 (Wavefunction Inc., Irvine, CA).Google Scholar
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 1

Download Kaduk et al. supplementary material(File)
File 5.8 KB
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material 2

Download Kaduk et al. supplementary material(File)
File 2.7 MB