Skip to main content

Advertisement

Log in

In vitro mechanistic studies on α-amanitin and its putative antidotes

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

A Correction to this article was published on 17 April 2020

This article has been updated

Abstract

α-Amanitin plays a key role in Amanita phalloides intoxications. The liver is a major target of α-amanitin toxicity, and while RNA polymerase II (RNA Pol II) transcription inhibition is a well-acknowledged mechanism of α-amanitin toxicity, other possible toxicological pathways remain to be elucidated. This study aimed to assess the mechanisms of α-amanitin hepatotoxicity in HepG2 cells. The putative protective effects of postulated antidotes were also tested in this cell model and in permeabilized HeLa cells. α-Amanitin (0.1–20 µM) displayed time- and concentration-dependent cytotoxicity, when evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and neutral red uptake assays. Additionally, α-amanitin decreased nascent RNA synthesis in a concentration- and time-dependent manner. While α-amanitin did not induce changes in mitochondrial membrane potential, it caused a significant increase in intracellular ATP levels, which was not prevented by incubation with oligomycin, an ATP synthetase inhibitor. Concerning the cell redox status, α-amanitin did not increase reactive species production, but caused a significant increase in total and reduced glutathione, which was abolished by pre-incubation with the inhibitor of gamma-glutamylcysteine synthase, buthionine sulfoximine. None of the tested antidotes [N-acetyl cysteine, silibinin, benzylpenicillin, and polymyxin B (PolB)] conferred any protection against α-amanitin-induced cytotoxicity in HepG2 cells or reversed the inhibition of nascent RNA caused by the toxin in permeabilized HeLa cells. Still, PolB interfered with RNA Pol II activity at high concentrations, though not impacting on α-amanitin observed cytotoxicity. New hepatotoxic mechanisms of α-amanitin were described herein, but the lack of protection observed in clinically used antidotes may reflect the lack of knowledge on their true protection mechanisms and may explain their relatively low clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 17 April 2020

    In the original publication of the article.

Abbreviations

BSA:

Bovine serum albumin

BSO:

Buthionine sulfoximine

BPNC:

Benzylpenicillin

DMEM:

Dulbecco’s modified eagle medium

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

EU:

5-Ethynyl uridine

EUTP:

5-Ethynyl uridine-triphosphate

HBSS:

Hanks’ balanced salt solution

MMP:

Mitochondrial membrane potential

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NAC:

N-Acetyl cysteine

NR:

Neutral red

SIL:

Silibinin

PBF:

Physiological buffer with Ficoll

PBS:

Phosphate buffer solution

PolB:

Polymyxin B

RNA Pol II:

RNA polymerase II

RS:

Reactive species

ROS:

Reactive oxygen species

References

  • Abdelraouf K, Chang KT, Yin T, Hu M, Tam VH (2014) Uptake of polymyxin B into renal cells. Antimicrob Agents Chemother 58(7):4200–4202

    PubMed  PubMed Central  Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    CAS  PubMed  Google Scholar 

  • Banerjee A, Dahiya M, Anand MT, Kumar S (2013) Inhibition of proliferation of cervical and leukemic cancer cells by penicillin G. Asian Pac J Cancer Prev 14(3):2127–2130

    PubMed  Google Scholar 

  • Brueckner F, Cramer P (2008) Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15(8):811–818

    CAS  PubMed  Google Scholar 

  • Burkard A, Dahn C, Heinz S et al (2012) Generation of proliferating human hepatocytes using Upcyte(R) technology: characterisation and applications in induction and cytotoxicity assays. Xenobiotica 42(10):939–956

    CAS  PubMed  Google Scholar 

  • Castell JV, Jover R, Martnez-Jimnez CP, Gmez-Lechn MJ (2006) Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol 2(2):183–212

    CAS  PubMed  Google Scholar 

  • Choppin J, Desplaces A (1979) The action of silybin on the mouse liver in alpha-amanitine poisoning. Arzneimittelforschung 29(1):63–68

    CAS  PubMed  Google Scholar 

  • Costa VM, Silva R, Ferreira R et al (2009) Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes. Toxicology 257(1–2):70–79

    CAS  PubMed  Google Scholar 

  • Dhanalakshmi S, Singh RP, Agarwal C, Agarwal R (2002) Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappaB and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene 21(11):1759–1767

    CAS  PubMed  Google Scholar 

  • Enjalbert F, Rapior S, Nouguier-Soule J, Guillon S, Amouroux N, Cabot C (2002) Treatment of amatoxin poisoning: 20-year retrospective analysis. J Toxicol Clin Toxicol 40(6):715–757

    CAS  PubMed  Google Scholar 

  • Faulstich H, Jahn W, Wieland T (1980) Silybin inhibition of amatoxin uptake in the perfused rat liver. Arzneimittelforschung 30(3):452–454

    CAS  PubMed  Google Scholar 

  • Ferreira PS, Nogueira TB, Costa VM et al (2013) Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicol Lett 216(2–3):159–170

    CAS  PubMed  Google Scholar 

  • Fiume L, Marinozzi V, Nardi F (1969) The effects of amanitin poisoning on mouse kidney. Br J Exp Pathol 50(3):270–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floersheim GL (1971) Antagonistic effects to phalloidin, alpha-amanitin and extracts of Amanita phalloides. Agents Actions 2(3):142–149

    CAS  PubMed  Google Scholar 

  • Floersheim GL, Schneeberger J, Bucher K (1971) Curative potencies of penicillin in experimental amanita phalloides poisoning. Agents Actions 2(3):138–141

    CAS  PubMed  Google Scholar 

  • Garcia J, Costa VM, Baptista P, Lourdes Bastos M, Carvalho F (2015a) Quantification of alpha-amanitin in biological samples by HPLC using simultaneous UV- diode array and electrochemical detection. J Chromatogr B Anal Technol Biomed Life Sci 997:85–95

    CAS  Google Scholar 

  • Garcia J, Costa VM, Carvalho A et al (2015b) Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol 86:41–55

    CAS  PubMed  Google Scholar 

  • Garcia J, Costa VM, Carvalho AT et al (2015c) A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Arch Toxicol 89(12):2305–2323

    CAS  PubMed  Google Scholar 

  • Garcia J, Costa VM, Bovolini A et al (2019) An effective antidotal combination of polymyxin B and methylprednisolone for alpha-amanitin intoxication. Arch Toxicol 93(5):1449–1463

    CAS  PubMed  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2):45–80

    CAS  PubMed  Google Scholar 

  • Gundala S, Wells LD, Milliano MT, Talkad V, Luxon BA, Neuschwander-Tetri BA (2004) The hepatocellular bile acid transporter Ntcp facilitates uptake of the lethal mushroom toxin alpha-amanitin. Arch Toxicol 78(2):68–73

    CAS  PubMed  Google Scholar 

  • Hammond CL, Lee TK, Ballatori N (2001) Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol 34(6):946–954

    CAS  PubMed  Google Scholar 

  • Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y (2010) DNA methylation profiles of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res 27(3):510–516

    CAS  PubMed  Google Scholar 

  • Jaeger A, Jehl F, Flesch F, Sauder P, Kopferschmitt J (1993) Kinetics of amatoxins in human poisoning: therapeutic implications. J Toxicol Clin Toxicol 31(1):63–80

    CAS  PubMed  Google Scholar 

  • Kaplan CD, Larsson KM, Kornberg RD (2008) The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol Cell 30(5):547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    CAS  PubMed  Google Scholar 

  • Kroncke KD, Fricker G, Meier PJ, Gerok W, Wieland T, Kurz G (1986) alpha-Amanitin uptake into hepatocytes. Identification of hepatic membrane transport systems used by amatoxins. J Biol Chem 261(27):12562–12567

    CAS  PubMed  Google Scholar 

  • Kudo M, Katayoshi T, Kobayashi-Nakamura K, Akagawa M, Tsuji-Naito K (2016) H+/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport. Biochem Biophys Res Commun 475(4):335–341

    CAS  PubMed  Google Scholar 

  • Le Vee M, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci 28(1–2):109–117

    PubMed  Google Scholar 

  • Lee KB, Wang D, Lippard SJ, Sharp PA (2002) Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci USA 99(7):4239–4244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leist M, Gantner F, Bohlinger I, Germann PG, Tiegs G, Wendel A (1994) Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J Immunol 153(4):1778–1788

    CAS  PubMed  Google Scholar 

  • Leist M, Gantner F, Naumann H et al (1997) Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 112(3):923–934

    CAS  PubMed  Google Scholar 

  • Letschert K, Faulstich H, Keller D, Keppler D (2006) Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci 91(1):140–149

    CAS  PubMed  Google Scholar 

  • Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170(3956):447–449

    CAS  PubMed  Google Scholar 

  • Linnett PE, Beechey RB (1979) Inhibitors of the ATP synthetase systems methods in enzymology, vol 55. Academic Press, New York, pp 472–518

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Magdalan J, Ostrowska A, Piotrowska A, Gomulkiewicz A, Szelag A, Dziedgiel P (2009a) Comparative antidotal efficacy of benzylpenicillin, ceftazidime and rifamycin in cultured human hepatocytes intoxicated with alpha-amanitin. Arch Toxicol 83(12):1091–1096

    CAS  PubMed  Google Scholar 

  • Magdalan J, Ostrowska A, Piotrowska A et al (2009b) Failure of benzylpenicillin, N-acetylcysteine and silibinin to reduce alpha-amanitin hepatotoxicity. Vivo 23(3):393–399

    CAS  Google Scholar 

  • Magdalan J, Ostrowska A, Piotrowska A et al (2010) Benzylpenicillin, acetylcysteine and silibinin as antidotes in human hepatocytes intoxicated with alpha-amanitin. Exp Toxicol Pathol 62(4):367–373

    CAS  PubMed  Google Scholar 

  • Matinkhoo K, Pryyma A, Todorovic M, Patrick B, Perrin D (2018) Synthesis of the death-cap mushroom toxin α-amanitin. J Am Chem Soc 140(21):6513–6517

    CAS  PubMed  Google Scholar 

  • Mitsui A, Sharp PA (1999) Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc Natl Acad Sci USA 96(11):6054–6059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molavi O, Narimani F, Asiaee F et al (2017) Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm Biol 55(1):729–739

    CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    CAS  PubMed  Google Scholar 

  • Mydlik M, Derzsiova K, Frank K (2013) Renal replacement therapy in acute poisonings–one center experience. Przegl Lek 70(6):381–385

    PubMed  Google Scholar 

  • Neftel KA, Hubscher U (1987) Effects of beta-lactam antibiotics on proliferating eucaryotic cells. Antimicrob Agents Chemother 31(11):1657–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nemes Z, Dietz R, Lüth JB, Gomba S, Hackenthal E, Gross F (1979) The pharmacological relevance of vital staining with neutral red. Experientia 35(11):1475–1476

    CAS  PubMed  Google Scholar 

  • Nguyen VT, Giannoni F, Dubois MF et al (1996) In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res 24(15):2924–2929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poucheret P, Fons F, Dore JC, Michelot D, Rapior S (2010) Amatoxin poisoning treatment decision-making: pharmaco-therapeutic clinical strategy assessment using multidimensional multivariate statistic analysis. Toxicon 55(7):1338–1345

    CAS  PubMed  Google Scholar 

  • Ramasamy K, Agarwal R (2008) Multitargeted therapy of cancer by silymarin. Cancer Lett 269(2):352–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131

    CAS  PubMed  Google Scholar 

  • Saliou C, Rihn B, Cillard J, Okamoto T, Packer L (1998) Selective inhibition of NF-kappaB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett 440(1–2):8–12

    CAS  PubMed  Google Scholar 

  • Singh RP, Mallikarjuna GU, Sharma G et al (2004) Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance. Clin Cancer Res 10(24):8641–8647

    CAS  PubMed  Google Scholar 

  • Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I (2013) In vitro models for liver toxicity testing. Toxicol Res 2(1):23–39

    CAS  Google Scholar 

  • Steurer B, Janssens RC, Geverts B et al (2018) Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc Natl Acad Sci USA 115(19):E4368–e4376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan HWS, Sim AYL, Long YC (2017) Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat Commun 8:338

    PubMed  PubMed Central  Google Scholar 

  • Tavassoli M, Afshari A, Arsene AL et al (2019) Toxicological profile of Amanita virosa—a narrative review. Toxicol Rep 6:143–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi AK, Agarwal C, Chan DC, Agarwal R (2004) Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncol Rep 11(2):493–499

    CAS  PubMed  Google Scholar 

  • van Tonder A, Joubert AM, Cromarty AD (2015) Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8:47

    PubMed  PubMed Central  Google Scholar 

  • Vogel G, Tuchweber B, Trost W, Mengs U (1984) Protection by silibinin against Amanita phalloides intoxication in beagles. Toxicol Appl Pharmacol 73(3):355–362

    CAS  PubMed  Google Scholar 

  • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127(5):941–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinmann R, Roeder RG (1974) Role of DNA-dependent RNA polymerase III in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci USA 71(5):1790–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winckler J (1974) Vitalfärbung von Lysosomen und anderen Zellorganellen der Ratte mit Neutralrot vital staining of lysosomes and other cell organelles of the rat with neutral red. Prog Histochem Cytochem 6(3):III-89

    Google Scholar 

  • Wlcek K, Koller F, Ferenci P, Stieger B (2013) Hepatocellular organic anion-transporting polypeptides (OATPs) and multidrug resistance-associated protein 2 (MRP2) are inhibited by silibinin. Drug Metab Dispos 41(8):1522–1528

    CAS  PubMed  Google Scholar 

  • Xu J, Oda S, Yokoi T (2018) Cell-based assay using glutathione-depleted HepaRG and HepG2 human liver cells for predicting drug-induced liver injury. Toxicol in vitro 48:286–301

    CAS  PubMed  Google Scholar 

  • Zheleva A, Tolekova A, Zhelev M, Uzunova V, Platikanova M, Gadzheva V (2007) Free radical reactions might contribute to severe alpha amanitin hepatotoxicity-a hypothesis. Med Hypotheses 69(2):361–367

    CAS  PubMed  Google Scholar 

  • Zhu C, Hu W, Wu H, Hu X (2014) No evident dose-response relationship between cellular ROS level and its cytotoxicity—a paradoxical issue in ROS-based cancer therapy. Sci Rep 4:5029

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Professor Marteijn from Erasmus Medical Center, Rotterdam, Netherlands for the RPB1-GFP cell line. This work was supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and by national funds by the FCT within the project PTDC-DTP-FTO-4973-2014 – POCI-01-0145-FEDER 016545. This work was also supported by the Applied Molecular Biosciences Unit – UCIBIO through UID/MULTI/04378/2019 support with funding from FCT/MCTES through national funds. VMC acknowledges Fundação da Ciência e Tecnologia (FCT) for her grant (SFRH/BPD/110001/2015) that was funded by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the Norma Transitória – DL57/2016/CP1334/CT0006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vera M. Costa or Félix Carvalho.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, D.F., Pires das Neves, R., Carvalho, A.T.P. et al. In vitro mechanistic studies on α-amanitin and its putative antidotes. Arch Toxicol 94, 2061–2078 (2020). https://doi.org/10.1007/s00204-020-02718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02718-1

Keywords

Navigation