Skip to main content
Log in

Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents an analytical solution for the nonlinear forced vibration response of bridged carbon nanotube (CNT)-based mass sensors subjected to different types of thermal loading and external harmonic excitations. The structure undergoes a temperature change through its thickness when considering three different distribution patterns of the temperature, namely uniform, linear, and nonlinear. The CNT is modeled as a nonlocal doubly clamped beam that complies with Euler–Bernoulli beam theory and Eringen’s nonlocal elasticity theory. The von Kármán geometric nonlinearity is adopted to account for the mid-plane stretching of end-constrained beams. The extended Hamilton’s principle is used to derive the nonlinear governing equations of motion, boundary conditions, and continuity conditions accounting for the location of the deposited particle. The method of multiple scales (MMS) is employed to perform the nonlinear dynamical analysis of the nanobeam. Analytical expressions of the nonlinear dynamic response of the system exposed to thermal loadings in the case of primary resonance are presented. An important contribution of this work is the provision for closed-form expressions of the resonance frequency and the critical amplitude of the considered system. Simultaneously, validation of the results by MMS is achieved by Galerkin’s procedure and Runge–Kutta method. Then, the effects of the thermal loads and some key parameters on the nonlinear resonance frequency and amplitude shifts are discussed, and some meaningful conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chiu, H.Y., Hung, P., Postma, H.W.C., Bockrath, M.: Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett. 8(12), 4342–4346 (2008)

    Google Scholar 

  2. Laird, E.A., Pei, F., Tang, W., Steele, G.A., Kouwenhoven, L.P.: A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 12(1), 193–197 (2011)

    Google Scholar 

  3. Huttel, A.K., Steele, G.A., Witkamp, B., Poot, M., Kouwenhoven, L.P., van der Zant, H.S.: Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9(7), 2547–2552 (2009)

    Google Scholar 

  4. Li, Y., Qiu, X., Yang, F., Wang, X.S., Yin, Y.: Ultra-high sensitivity of super carbon-nanotube-based mass and strain sensors. Nanotechnology 19(16), 165502 (2008)

    Google Scholar 

  5. Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based bio-sensors. Physica E 42(2), 104–109 (2009)

    Google Scholar 

  6. Hanna Varghese, S., Nair, R., Nair, B.G., Hanajiri, T., Maekawa, T., Yoshida, Y., Sakthi Kumar, D.: Sensors based on carbon nanotubes and their applications: a review. Curr. Nanosci. 6(4), 331–346 (2010)

    Google Scholar 

  7. Sawano, S., Arie, T., Akita, S.: Carbon nanotube resonator in liquid. Nano Lett. 10(9), 3395–3398 (2010)

    Google Scholar 

  8. Arash, B., Wang, Q., Varadan, V.K.: Carbon nanotube-based sensors for detection of gas atoms. J. Nanotechnol. Eng. Med. 2(2), 021010 (2011)

    Google Scholar 

  9. Ali-Akbari, H.R., Shaat, M., Abdelkefi, A.: Bridged single-walled carbon nanotube-based atomic-scale mass sensors. Appl. Phys. A 122(8), 762 (2016)

    Google Scholar 

  10. Shaat, M., Abdelkefi, A.: Reporting the sensitivities and resolutions of CNT-based resonators for mass sensing. Mater. Des. 114, 591–598 (2017)

    Google Scholar 

  11. Ali-Akbari, H.R., Ceballes, S., Abdelkefi, A.: Geometrical influence of a deposited particle on the performance of bridged carbon nanotube-based mass detectors. Physica E 94, 31–46 (2017)

    Google Scholar 

  12. Wang, Q., Arash, B.: A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput. Mater. Sci. 82, 350–360 (2014)

    Google Scholar 

  13. Arash, B., Wang, Q., Duan, W.H.: Detection of gas atoms via vibration of graphenes. Phys. Lett. A 375(24), 2411–2415 (2011)

    Google Scholar 

  14. Georgantzinos, S.K., Anifantis, N.K.: Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Physica E 42(5), 1795–1801 (2010)

    Google Scholar 

  15. Jensen, K., Kim, K., Zettl, A.: An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3(9), 533 (2008)

    Google Scholar 

  16. Ali-Akbari, H.R., Ceballes, S., Abdelkefi, A.: Nonlinear performance analysis of forced carbon nanotube-based bio-mass sensors. Int. J. Mech. Mater. Des. 15, 1–25 (2018)

    Google Scholar 

  17. Conley, W.G., Yu, L., Nelis, M.R., Raman, A., Krousgrill, C.M., Mohammadi, S., Rhoads, J.F.: The nonlinear dynamics of electrostatically-actuated, single-walled carbon nanotube resonators. In: International Conference on Recent Advances in Structural Dynamics, Southampton (2010)

  18. Zhang, Y., Liu, Y., Murphy, K.D.: Nonlinear dynamic response of beam and its application in nanomechanical resonator. Acta. Mech. Sin. 28(1), 190–200 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Mahdavi, M.H., Jiang, L.Y., Sun, X.: Nonlinear vibration and postbuckling analysis of a single layer graphene sheet embedded in a polymer matrix. Physica E 44(7–8), 1708–1715 (2012)

    Google Scholar 

  20. Souayeh, S., Kacem, N.: Computational models for large amplitude nonlinear vibrations of electrostatically actuated carbon nanotube-based mass sensors. Sens. Actuators A 208, 10–20 (2014)

    Google Scholar 

  21. Hajnayeb, A., Khadem, S.E.: Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J. Sound Vib. 331(10), 2443–2456 (2012)

    Google Scholar 

  22. Li, H.B., Wang, X.: Nonlinear frequency shift behavior of graphene–elastic–piezoelectric laminated films as a nano-mass detector. Int. J. Solids Struct. 84, 17–26 (2016)

    Google Scholar 

  23. Kim, I.K., Lee, S.I.: Theoretical investigation of nonlinear resonances in a carbon nanotube cantilever with a tip-mass under electrostatic excitation. J. Appl. Phys. 114(10), 104303 (2013)

    Google Scholar 

  24. Jomehzadeh, E., Saidi, A.R.: A study on large amplitude vibration of multilayered graphene sheets. Comput. Mater. Sci. 50(3), 1043–1051 (2011)

    Google Scholar 

  25. Xu, T., Younis, M.I.: Nonlinear dynamics of carbon nanotubes under large electrostatic force. J. Comput. Nonlinear Dyn. 11(2), 021009 (2016)

    Google Scholar 

  26. Stamenković, M., Karličić, D., Goran, J., Kozić, P.: Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field. J. Mech. Mater. Struct. 11(3), 279–307 (2016)

    MathSciNet  Google Scholar 

  27. Mehdipour, I., Erfani-Moghadam, A., Mehdipour, C.: Application of an electrostatically actuated cantilevered carbon nanotube with an attached mass as a bio-mass sensor. Curr. Appl. Phys. 13(7), 1463–1469 (2013)

    Google Scholar 

  28. Patel, A.M., Joshi, A.Y.: Characterizing the nonlinear behaviour of double walled carbon nanotube based nano mass sensor. Microsyst. Technol. 23(6), 1879–1889 (2017)

    Google Scholar 

  29. Karličić, D., Kozić, P., Adhikari, S., Cajić, M., Murmu, T., Lazarević, M.: Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. Int. J. Mech. Sci. 96, 132–142 (2015)

    Google Scholar 

  30. Togun, N.: Nonlinear vibration of nanobeam with attached mass at the free end via nonlocal elasticity theory. Microsyst. Technol. 22(9), 2349–2359 (2016)

    Google Scholar 

  31. Farajpour, A., Yazdi, M.H., Rastgoo, A., Loghmani, M., Mohammadi, M.: Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos. Struct. 140, 323–336 (2016)

    Google Scholar 

  32. Farokhi, H., Ghayesh, M.H., Hussain, S.: Large-amplitude dynamical behaviour of microcantilevers. Int. J. Eng. Sci. 106, 29–41 (2016)

    Google Scholar 

  33. Wang, Y.Z., Li, F.M.: Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int. J. Non Linear Mech. 61, 74–79 (2014)

    Google Scholar 

  34. Wang, Y., Li, F., Jing, X., Wang, Y.: Nonlinear vibration analysis of double-layered nanoplates with different boundary conditions. Phys. Lett. A 379(24–25), 1532–1537 (2015)

    MathSciNet  MATH  Google Scholar 

  35. He, X.Q., Rafiee, M., Mareishi, S.: Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance. Nonlinear Dyn. 79(3), 1863–1880 (2015)

    MATH  Google Scholar 

  36. Nguyen, D.D., Tran, Q.Q., Nguyen, D.K.: New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature. Aerosp. Sci. Technol. 71, 360–372 (2017)

    Google Scholar 

  37. Ansari, R., Hasrati, E., Gholami, R., Sadeghi, F.: Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto-electro-thermo elastic nanobeams. Compos. B Eng 83, 226–241 (2015)

    Google Scholar 

  38. Ebrahimi, F., Salari, E.: Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astronaut. 113, 29–50 (2015)

    Google Scholar 

  39. Farajpour, A., Dehghany, M., Shahidi, A.R.: Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment. Compos. B Eng 50, 333–343 (2013)

    Google Scholar 

  40. Tounsi, A., Benguediab, S., Adda, B., Semmah, A., Zidour, M.: Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

    Google Scholar 

  41. Ebrahimi, F., Salari, E.: Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos. Struct. 128, 363–380 (2015)

    Google Scholar 

  42. Ebrahimi, F., Salari, E.: Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams. Mech. Adv. Mater. Struct. 23(12), 1379–1397 (2016)

    Google Scholar 

  43. Ebrahimi, F., Barati, M.R.: Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment. Int. J. Smart Nano Mater. 7(2), 69–90 (2016)

    Google Scholar 

  44. Zhang, Y.Q., Liu, X., Liu, G.R.: Thermal effect on transverse vibrations of double-walled carbon nanotubes. Nanotechnology 18(44), 445701 (2007)

    Google Scholar 

  45. Tounsi, A., Semmah, A., Bousahla, A.A.: Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory. J. Nanomech. Micromech. 3(3), 37–42 (2013)

    Google Scholar 

  46. Ebrahimi, F., Salari, E.: Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos. B Eng 78, 272–290 (2015)

    Google Scholar 

  47. Ke, L.L., Wang, Y.S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21(2), 025018 (2012)

    MathSciNet  Google Scholar 

  48. Ebrahimi, F., Salari, E., Hosseini, S.A.H.: Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions. J. Therm. Stress. 38(12), 1360–1386 (2015)

    Google Scholar 

  49. Ebrahimi, F., Barati, M.R.: Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams. Mech. Adv. Mater. Struct. 24(11), 924–936 (2017)

    Google Scholar 

  50. Farajpour, A., Yazdi, M.H., Rastgoo, A., Mohammadi, M.: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227(7), 1849–1867 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Ghaffari, S.S., Ceballes, S., Abdelkefi, A.: Role and significance of thermal loading on the performance of carbon nanotube-based mass sensors. Mater. Des. 160, 229–250 (2018)

    Google Scholar 

  52. Kang, D.K., Yang, H.I., Kim, C.W.: Thermal effects on mass detection sensitivity of carbon nanotube resonators in nonlinear oscillation regime. Physica E 74, 39–44 (2015)

    Google Scholar 

  53. Kang, D.K., Kim, C.W., Yang, H.I.: Thermal effects on nonlinear vibration of a carbon nanotube-based mass sensor using finite element analysis. Physica E 85, 125–136 (2017)

    Google Scholar 

  54. Shafiei, N., Kazemi, M., Ghadiri, M.: Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen’s nonlocal elasticity and DQM. Appl. Phys. A 122(8), 728 (2016)

    Google Scholar 

  55. Shen, H.S., Xu, Y.M., Zhang, C.L.: Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput. Methods Appl. Mech. Eng. 267, 458–470 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Koh, H., Cannon, J.J., Shiga, T., Shiomi, J., Chiashi, S., Maruyama, S.: Thermally induced nonlinear vibration of single-walled carbon nanotubes. Phys. Rev. B 92(2), 024306 (2015)

    Google Scholar 

  57. Ghaffari, S.S., Ceballes, S., Abdelkefi, A.: Effects of thermal loads representations on the dynamics and characteristics of carbon nanotubes-based mass sensors. Smart Mater. Struct. 28(7), 074003 (2019)

    Google Scholar 

  58. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors S. Ceballes and A. Abdelkefi would like to acknowledge and thank the National Science Foundation Graduate Research Fellowship Program for funding support.

Funding

No funding for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, S.S., Ceballes, S. & Abdelkefi, A. Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings. Nonlinear Dyn 100, 1013–1035 (2020). https://doi.org/10.1007/s11071-020-05565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05565-y

Keywords

Navigation