Skip to main content
Log in

Adaptive neural impedance control for electrically driven robotic systems based on a neuro-adaptive observer

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive neural impedance control (ANIC) strategy for electrically driven robotic systems, considering system uncertainties and external disturbances. For the considered robotic system, the joint velocities and armature currents are assumed to be unknown and unmeasured, and an adaptive observer is then designed to estimate its unknown states using a neural network. Based on the observed joint velocities and armature currents, an ANIC scheme is proposed and the performances of the joint positions and force tracking can be improved. We also prove that the control system is stable and all the signals in closed-loop system are bounded. Simulation examples on a two-link electrically driven robotic manipulator are presented to show the effectiveness of the proposed observer-based intelligent impedance control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Guldner, J., Carroll, J.J., Dawson, D.M., et al.: Robust tracking control of rigid-link electrically-driven robots. Int. J. Syst. Sci. 25(4), 629–649 (1994)

    Article  Google Scholar 

  2. Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robot manipulators. Nonlinear Dyn. 70(2), 1445–1458 (2012)

    Article  MathSciNet  Google Scholar 

  3. Tarn, T.J., Bejczy, A.K., Yun, X., et al.: Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Trans. Robot. Autom. 7(1), 114–122 (1991)

    Article  Google Scholar 

  4. Huang, S.N., Tan, K.K., Lee, T.H.: Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4–6), 885–894 (2008)

    Article  Google Scholar 

  5. Lu, H.C., Tsai, C.H., Chang, M.H.: Radial basis function neural network with sliding mode control for robotic manipulators. In: IEEE International Conference on Systems Man and Cybernetics, pp. 1209–1215 (2010)

  6. General, I.: Adaptive neural output feedback control for uncertain robot manipulators with input saturation. Complexity 2017, 1–12 (2017)

    MathSciNet  Google Scholar 

  7. Rani, M., Kumar, N.: Intelligent tracking control of redundant robot manipulators including actuator dynamics. Procedia Comput. Sci. 125, 50–58 (2018)

    Article  Google Scholar 

  8. Rahimi, H.N., Howard, I., Cui, L.: Neural adaptive tracking control for an uncertain robot manipulator with time-varying joint space constraints. Mech. Syst. Signal Process. 112, 44–60 (2018)

    Article  Google Scholar 

  9. Asl, H.J., Narikiyo, T., Kawanishi, M.: Adaptive neural network-based saturated control of robotic exoskeletons. Nonlinear Dyn. 94(1), 123–139 (2018)

    Article  Google Scholar 

  10. Peng, J., Dubay, R.: Adaptive fuzzy backstepping control for a class of uncertain nonlinear strict-feedback systems based on dynamic surface control approach. Expert Syst. Appl. 120, 239–252 (2019)

    Article  Google Scholar 

  11. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)

    Article  Google Scholar 

  12. Zhang, S., Dong, Y., Ouyang, Y., et al.: Adaptive neural control for robotic manipulators with output constraints and uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5554–5564 (2018)

    Article  MathSciNet  Google Scholar 

  13. Peng, J., Liu, Y., Wang, J.: Fuzzy adaptive output feedback control for robotic systems based on fuzzy adaptive observer. Nonlinear Dyn. 78(2), 789–801 (2014)

    Article  Google Scholar 

  14. Vo, A.T., Kang, H.J., Nguyen, V.C.: An output feedback tracking control based on neural sliding mode and high order sliding mode observer. In: International Conference on Human System Interactions, pp. 161–165 (2017)

  15. Yen, H.M., Li, T.H.S., Chang, Y.C.: Adaptive neural network based tracking control for electrically driven flexible-joint robots without velocity measurements. Comput. Math. Appl. 64(5), 1022–1032 (2012)

    Article  Google Scholar 

  16. Liu, X., Yang, C., Chen, Z., et al.: Neuro-adaptive observer based control of flexible joint robot. Neurocomputing 275, 73–82 (2018)

    Article  Google Scholar 

  17. Haouari, F., Bali, N., Tadjine, M., et al.: A CDM-backstepping control with nonlinear observer for electrically driven robot manipulator. Autom. Control Comput. Sci. 50(5), 332–346 (2016)

    Article  Google Scholar 

  18. Takahashi, C., Scheidt, R., Reinkensmeyer, D.: Impedance control and internal model formation when reaching in a randomly varying dynamical environment. J. Neurophysiol. 86(2), 1047–1051 (2001)

    Article  Google Scholar 

  19. Peng, J., Yang, Z., Wang, Y., et al.: Robust adaptive motion/force control scheme for crawler-type mobile manipulator with nonholonomic constraint based on sliding mode control approach. ISA Trans. 92, 166–179 (2019)

    Article  Google Scholar 

  20. Ott, C., Nakamura, Y.: Base force/torque sensing for position based Cartesian impedance control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3244–3250 (2009)

  21. Xu, Q.: Robust impedance control of a compliant microgripper for high-speed position/force regulation. IEEE Trans. Ind. Electron. 62(2), 1201–1209 (2015)

    Article  Google Scholar 

  22. Baigzadehnoe, B., Rahmani, Z., Khosravi, A., et al.: On position/force tracking control problem of cooperative robot manipulators using adaptive fuzzy backstepping approach. ISA Trans. 70, 432–446 (2017)

    Article  Google Scholar 

  23. Peng, J., Yang, Z., Ma, T.: Position/force tracking impedance control for robotic systems with uncertainties based on adaptive Jacobian and neural network. Complexity 2019, 1–17 (2019)

    MATH  Google Scholar 

  24. Fateh, M.M., Babaghasabha, R.: Impedance control of robots using voltage control strategy. Nonlinear Dyn. 74(1–2), 277–286 (2013)

    Article  MathSciNet  Google Scholar 

  25. Yang, Z., Peng, J., Liu, Y.: Adaptive neural network force tracking impedance control for uncertain robotic manipulator based on nonlinear velocity observer. Neurocomputing 331, 263–280 (2019)

    Article  Google Scholar 

  26. Chien, M.C., Huang, A.C.: Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix. Robotica 30(1), 133–144 (2012)

    Article  Google Scholar 

  27. Izadbakhsh, A.: Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dyn. 85(2), 751–765 (2016)

    Article  MathSciNet  Google Scholar 

  28. Neria, M.R., Ortega, G.O., Castillo, N.L., et al.: On the robust trajectory tracking task for flexible-joint robotic arm with unmodeled dynamics. IEEE Access. 4, 7816–7827 (2016)

    Article  Google Scholar 

  29. Liu, H., Huang, Y., Wu, W.: Improved adaptive output feedback controller for flexible-joint robot manipulators. In: IEEE International Conference on Information and Automation, pp. 1653–1658 (2017)

  30. Izadbakhsh, A.: FAT-based robust adaptive control of electrically driven robots without velocity measurements. Nonlinear Dyn. 89(1), 289–304 (2017)

    Article  MathSciNet  Google Scholar 

  31. Lochan, K., Singh, J.P., Roy, B.K., et al.: Adaptive time-varying supertwisting global SMC for projective synchronisation of flexible manipulator. Nonlinear Dyn. 93(4), 2071–2088 (2018)

    Article  Google Scholar 

  32. Dian, S., Hu, Y., Zhao, T., et al.: Adaptive backstepping control for flexible-joint manipulator using interval type-2 fuzzy neural network approximator. Nonlinear Dyn. 97(2), 1567–1580 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (61773351, 61703372), the Program for Science & Technology Innovation Talents in Universities of Henan Province (20HASTIT031), the Training Plan for University’s Young Backbone Teachers of Henan Province (2017GGJS004), Outstanding Foreign Scientists Support Project in Henan Province of China (GZS201908) and the China Scholarship Council (201907045008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The proof of Lemma 1.

Taking the derivative of \(M^*\) with respect to time, we can obtain,

$$\begin{aligned} {{\dot{M}}}^*= {J^{\mathrm {-T}}}{\dot{M}_0}(q)J^{-1}-2{J^{\mathrm {-T}}}M_0(q)J^{-1}{\dot{J}}J^{-1}. \end{aligned}$$
(89)

Considering \({C}^*={J^{\mathrm {-T}}}\Big (C_0(q,\dot{q})-M_0(q)J^{-1}\dot{J} \Big )J^{-1}\) and substituting Eq. (89) and \({C}^*\) into Eq. (12), yields

$$\begin{aligned}&\zeta ^{{\mathrm {T}}}({{\dot{M}}}^*-2{C}^*)\zeta \nonumber \\&\quad = \zeta ^{{\mathrm {T}}}\left[ {J^{\mathrm {-T}}}{\dot{M}_0}(q)J^{-1} \right. \nonumber \\&\left. \qquad -2{J^{\mathrm {-T}}}M_0(q)J^{-1}{\dot{J}}J^{-1}-2{C}^*\right] \zeta \nonumber \\&\quad = \zeta ^{{\mathrm {T}}}\left[ {J^{\mathrm {-T}}}{\dot{M}_0}(q)J^{-1}-2{J^{\mathrm {-T}}}M_0(q)J^{-1}{\dot{J}}J^{-1}\right. \nonumber \\&\qquad \left. -2{J^{{\mathrm {T}}}}^{-1}\left( C_0(q,\dot{q})-M_0(q)J^{-1}\dot{J} \right) J^{-1} \right] \zeta \nonumber \\&\quad = \zeta ^{{\mathrm {T}}}\left[ {J^{\mathrm {-T}}}{\dot{M}_0}(q)J^{-1}-2{J^{\mathrm {-T}}}C_0(q,\dot{q})J^{-1} \right] \zeta \nonumber \\&\quad = \zeta ^{{\mathrm {T}}}\left[ {J^{\mathrm {-T}}}\left( {\dot{M}_0}(q)-2C_0(q,\dot{q}) \right) J^{-1} \right] \zeta \nonumber \\&\quad = 0. \end{aligned}$$
(90)

It means that the matrix \({{\dot{M}}}^*-2{C}^*\) is skew symmetric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Ding, S., Yang, Z. et al. Adaptive neural impedance control for electrically driven robotic systems based on a neuro-adaptive observer. Nonlinear Dyn 100, 1359–1378 (2020). https://doi.org/10.1007/s11071-020-05569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05569-8

Keywords

Navigation