Skip to main content
Log in

Analysis of Bogdanov–Takens bifurcations in a spatiotemporal harvested-predator and prey system with Beddington–DeAngelis-type response function

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we consider a predator–prey system with constant rate of harvesting, which exhibits Hopf and Bogdanov–Takens bifurcations under certain parametric conditions. The parametric space under which the system enters into Hopf bifurcation is investigated. By constructing suitable Lyapunov function, global stability results are obtained. Here, death rate and harvesting rate are taken as the Bogdanov–Takens bifurcation parameters. The canonical form of Bogdanov–Takens bifurcation is derived with the use of repeated nonlinear analytic transformation of coordinates. Later, we include the spatiotemporal effect on the same system and observed some relevant outcomes like Turing pattern, Turing–Bogdanov–Takens bifurcation, Turing–Hopf bifurcation and asynchrony of predator and prey in the space. The present study renders important tools for investigations of the dynamics of biotic organisms (predator and prey) for the management and control of overharvesting. Extensive numerical examples are given in support of the physical existence of the model system under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Clark, C.W.: Bioeconomic Modelling and Fisheries Management. Wiley, New York (1985)

    Google Scholar 

  2. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edn. Wiley, New Yourk (1990)

    MATH  Google Scholar 

  3. Moitri, S., Srinivasu, P.D.N., Banerjee, M.: Global dynamics of an additional food provided predator-prey system with constant harvest in predators. Appl. Math. Comput. 250, 193–211 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Haque, Md.M., Sarwardi, S.: Dynamics of a harvested pre-predator model with prey refuge dependent on both species. Int. J. Bifur. Chaos. 25, 1830040 (2018)

  5. Beddington, J.R., May, R.M.: Maximum sustainable yields in systems subject to harvesting at more than one trophic level. Math. Biosci. 51, 261–281 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Beddington, J.R., Cooke, J.G.: Harvesting from a prey–predator complex. Ecol. Model. 14, 155–177 (1982)

    Google Scholar 

  7. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator–prey model with constant-yield harvesting. Discrt. Cont. Dyn. Syst. B 18, 2101–2121 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Christensen, V.: Managing fisheries involving predator and prey species. Rev. Fish Biol. Fish. 6, 417–442 (1996)

    Google Scholar 

  9. May, R.M., Beddington, J.R., Clark, C.W., Holt, S.J., Laws, R.M.: Management of multispecies fisheries. Science 205, 267–277 (1979)

    Google Scholar 

  10. Huang, J., Gong, Y., Chen, J.: Multiple bifurcations in a predator–prey system of Holling and Leslie type with constant-yield prey harvesting. Int. J. Bifur. Chaos. 23, 1350164 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Xiao, M., Cao, J.: Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator–prey model with linear harvesting rate. Anal. Comput. Math. Comput. Model 50, 360–379 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Makinde, O.D.: Solving ratio-dependent predator–prey system with constant effort harvesting using Adomian decomposition method. Appl. Math. Comput. 186, 17–22 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Peng, G., Jiang, Y., Li, C.: Bifurcations of a Holling-type II predator–prey system with constant rate harvesting. Int. J. Bifur. Chaos. 19, 2499–2514 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM. J. Appl. Math. 61, 14451472 (2001)

    MathSciNet  Google Scholar 

  15. May, R.: Stability and Complexity in Model Ecosystems with a New Introduction by the Author. Princenton University Press, Princenton (1973)

    Google Scholar 

  16. Freedman, H.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New Yourk (1980)

    MATH  Google Scholar 

  17. Akcakaya, H., Arditi, R., Ginzburg, L.: Ratio-dependent predation: an abstraction that works. Ecology 76, 995 (1995)

    Google Scholar 

  18. Conser, C., DeAngelis, D., Ault, J., Olson, D.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65 (1999)

    MATH  Google Scholar 

  19. Gutierrez, A.: Physiological basis of ratio-dependent predator–prey theory: the metabolic pool model as a paradigm. Ecology 73(5), 155 (1992)

    Google Scholar 

  20. Haque, M.: Ratio-dependent predator–prey models of interacting populations. Bull. Math. Biol. 71, 430 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969)

    Google Scholar 

  22. Salt, G.W.: Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum. Ecology 55, 434–439 (1974)

    Google Scholar 

  23. Alonso, D., Bartumeus, F., Catalan, J.: Mutual interference between predators can give rise to Turing spatial patterns. Ecology 83, 28 (2002)

    Google Scholar 

  24. Hwang, Z.W.: Global analysis of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 281, 395–401 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Hwang, Z.W.: Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 290, 113–122 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Google Scholar 

  27. DeAngelis, R.A., Goldstein, R.A., Neill, R.: A model of trophic interaction. Ecology 56, 881–892 (1975)

    Google Scholar 

  28. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn Boston, Cambridge (1982)

    MATH  Google Scholar 

  29. Hale, J.: Ordinary Differential Equation. Klieger Publishing Company, Malabar (1989)

    Google Scholar 

  30. Bogdanov, R.: Bifurcation of a limit-cycle for a family of vector fields on the plane. Sel. Math. Soviet. 1, 377–388 (1981)

    Google Scholar 

  31. Bogdanov, R.: Versal deformation of a singular point on the plane in the case of zero eigenvalues. Sel. Math. Soviet. 1, 389–421 (1981)

    Google Scholar 

  32. Takens, F.: Forced oscillations and bifurcation. In: Applications of Global Analysis I. Commun. Math. Inst. Rijksuniversitat Utrecht. 3, 1–59 (1974)

  33. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    MATH  Google Scholar 

  34. Chow, S.N., Li, C.Z., Wang, D.: Normals Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  35. Turing, A.M.: On the chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  36. Nicolis, R., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  37. Maini, P., Painter, K., Chau, H.P.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93, 3601–3610 (1997)

    Google Scholar 

  38. Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–634 (1972)

    Google Scholar 

  39. Castets, V., Dulos, E., Boissonade, J., Kepper, P.D.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990)

    Google Scholar 

  40. Waddington, C.H., Perry, M.M.: The ultrastructure of the developing urodele notochord. Proc. R. Soc. Lond. B Biol. Sci. 165, 459–482 (1990)

    Google Scholar 

  41. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetic 12, 30–39 (1972)

    MATH  Google Scholar 

  42. Rogers, K.W., Schier, A.F.: Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011)

    Google Scholar 

  43. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 325, 610–612 (1991)

    Google Scholar 

  44. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    MATH  Google Scholar 

  45. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 74, 545–559 (1972)

    Google Scholar 

  46. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)

    MathSciNet  MATH  Google Scholar 

  47. Ghorai, S., Poria, S.: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity. Chaos. Sol. Fract 91, 421–429 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Hu, J.H., Xue, Y.K., Sun, G.Q., Jin, Z., Zhang, J.: Global dynamics of a predator–prey system modeling by metaphysiological approach. Appl. Math. Comput. 283, 369–384 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Li, L., Jin, Z., Li, J.: Periodic solutions in a herbivore-plant system with time delay and spatial diffusion. Appl. Math. Model. 40, 4765–4777 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Sun, G.Q., Jin, Z., Liu, Q.X., Li, L.: Pattern formation induced by cross-diffusion in a predator-prey system. Chin. Phys. B 17, 3936–3941 (2008)

    Google Scholar 

  51. Sun, G.Q., Zhang, J., Song, L.P., Jin, Z., Li, B.L.: Pattern formation of a spatial predator–prey system. Appl. Math. Comput. 218, 11151–11162 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Sun, G.Q., Jin, Z., Li, L., Haque, M., Li, B.L.: Spatial patterns of a predator–prey model with cross diffusion. Nonlinear Dyn. 69, 1631–1638 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Sun, G.Q., Li, L., Zhang, Z.K.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73, 2207–2219 (2013)

    MathSciNet  Google Scholar 

  54. Sun, G.Q., Chakraborty, A., Liu, Q.X., Jin, Z., Anderson, K.E., Li, B.L.: Influence of time delay and nonlinear diffusion on herbivore outbreak. Commun. Nonl. Sci. Numer. Simul. 19, 1507–1518 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Sun, G.Q., Wang, S.L., Ren, Q., Jin, Z., Wu, Y.P.: Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci. Rep. 5, 11246 (2015)

    Google Scholar 

  56. Sun, G.Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    MathSciNet  Google Scholar 

  57. Sun, G.Q., Wu, Z.Y., Wang, Z., Jin, Z.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83, 811–819 (2016)

    MathSciNet  Google Scholar 

  58. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  59. Liu, C., Zhang, Q., Zhang, X., Duan, X.: Dynamical behavior in a stage-structured differential-algebraic prey–predator model with discrete time delay and harvesting. J. Comput. Appl. Math. 231, 612–625 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Sambath, M., Balachandran, K.: Spatiotemporal dynamics of a predator–prey model incorporating a prey refuge. J. Appl. Anal. Comput. 3, 71–80 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B. 29, 1450239 (2015)

    Google Scholar 

  62. Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016)

    MathSciNet  Google Scholar 

  63. Ma, J., Yang, Z., Yang, L., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A. (Appl. Phys. & Eng.) 20, 639–639 (2019)

    Google Scholar 

  64. Malchow, H.: Motional instabilities in predator–prey systems. J. Theor. Biol. 204, 639–647 (2000)

    Google Scholar 

  65. Pascual, M.: Diffusion-induced chaos in a spatial predator–prey system. Proc. Biol. Sci. 251, 0962–8452 (1993)

    Google Scholar 

  66. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B. 32, 1830003 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Medvinsky, A.B.: A periodic patterns in the cellnutrient substrate system. In: Schweitzet, F. (Ed.), Self -Organization of Complex Structures. From Individual to Collective Dynamics, Gordon Breach, London, pp. 269–280 (1997)

  68. Haque, M.: Existence of complex patterns in the Beddington–DeAngelis predator-prey model. Math. Biosc. 239, 179–190 (2012)

    MathSciNet  MATH  Google Scholar 

  69. Leppnen, T.: Ph.D. Thesis, Helsinki University of Technology, Finland (2004)

  70. Wu, F., Ma, J., Ren, G.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A (Appl. Phys. & Eng.) 19, 889–903 (2018)

    Google Scholar 

  71. Xiao, D., Ruan, S.: Bogdanov–Takens bifurcation in predator–prey systems with constant rate harvesting. Field Inst. Commun. 21, 493–506 (1999)

    MathSciNet  MATH  Google Scholar 

  72. Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmontonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    MATH  Google Scholar 

  73. Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator–prey system. SIAM. J. Appl. Math. 58, 193–210 (1998)

    MathSciNet  MATH  Google Scholar 

  74. Li, L., Jin, Z.: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    MathSciNet  Google Scholar 

  75. Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction-diffusion predator–prey model with both refuge and harvesting. Nonlinear Dyn. 88, 1501–1533 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Mathematics and Statistics, Aliah University, for furnishing opportunities to perform the present work. The authors do appreciate Dr. Mehboob Hoque, Department of Biological Sciences, Aliah University, for his ample help to improve the quality of the manuscript. The corresponding author Dr. Sarwardi is thankful to Dr. Mohd. Hafiz Mohd., School of Mathematical Sciences, Universiti Sains Malaysia, for verifying numerical results of the present refined manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahabuddin Sarwardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwardi, S., Haque, M.M. & Hossain, S. Analysis of Bogdanov–Takens bifurcations in a spatiotemporal harvested-predator and prey system with Beddington–DeAngelis-type response function. Nonlinear Dyn 100, 1755–1778 (2020). https://doi.org/10.1007/s11071-020-05549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05549-y

Keywords

Navigation