Skip to main content
Log in

Turbine Housing Failure Due to Sigma Phase Precipitation and Embrittlement of Niobium-Stabilized Austenitic Steel Casting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Failure investigation of Nb-stabilized GX40CrNiSi25-12 austenitic steel turbine housing casting subjected to high-temperature degradation under cyclic thermal and strain loading was performed. Crucial, temperature-dependent microstructural degradation due to intermetallic sigma (σ) phase precipitation was observed. Despite the typical for as cast condition stable spheroidal, also needle-like and square-like σ phase precipitation was detected. The σ phase increased the hardness and decreased the toughness, as well as the elongation of the turbine housing casting. Embrittlement caused by σ phase precipitation determined cracking initiation and propagation processes. As a result, turbine housing failed during industrial testing due to intergranular multicracking mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.-C. Hsieh and W. Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels, ISRN Metall., 2012. https://doi.org/10.5402/2012/732471

    Article  CAS  Google Scholar 

  2. A.M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, Sigma Phase Formation and Embrittlement of Cast Iron-Chromium-Nickel (Fe-Cr-Ni) Alloys. J. Miner. Mater. Charact. Eng., 2008, 7(2), p 127–145

    Google Scholar 

  3. W.T. Becker and R.J. Shipley, Failure Analysis and Prevention, ASM Handbook, vol. 11, ASM International, Materials Park, 1996

    Google Scholar 

  4. M.F. Ashby, Deformation-Mechanism: Maps. Acta Metall., 1972, 20, p 887–897

    Article  CAS  Google Scholar 

  5. R.A. Kumar, S.K. Sinha, Y.N. Tiwari, J. Swaminathan, G. Das, and S. Chaudhuri, Analysis of Failed Reformer Tubes. Eng. Fail. Anal., 2003, 10, p 351–358

    Article  Google Scholar 

  6. V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures, 2nd edn., Wiley, New York, 1987

    Google Scholar 

  7. A. El-Batahgy and B. Zaghloul, Creep Failure of Cracking Heater at a Petrochemical Plant. Mater. Charact., 2005, 54(3), p 239–245

    Article  CAS  Google Scholar 

  8. M. Ekström, Oxidation and corrosion fatigue aspects of cast exhaust manifolds, Doctoral thesis presented for the public with permission from KTH Royal Institute of Technology for doctoral degree, May 29th 2015 (Stockholm)

  9. B. Dyson, Use of CDM in Materials Modeling and Component Creep Life Prediction. J. Press. Vessel Technol., 2002, 122(3), p 281–296

    Article  CAS  Google Scholar 

  10. N. Ejaz and A. Tauqir, Failure due to Structural Degradation in Turbine Blades. Eng. Fail. Anal., 2006, 13(3), p 452–463

    Article  CAS  Google Scholar 

  11. C. Barbosa, J.L. Nascimento, I.M.V. Caminha, and I.C. Abud, Microstructural Aspects of the Failure Analysis of Nickel Base Superalloys Components. Eng. Fail. Anal., 2005, 12(3), p 348–361

    Article  CAS  Google Scholar 

  12. H.T. Pang and P.A.S. Reed, Microstructure Effects on High Temperature Fatigue Crack Initiation and Short Crack Growth in Turbine Disc Nickel-Base Superalloy Udimet 720Li. Mater. Sci. Eng., 2007, 448(1–2), p 67–79

    Article  Google Scholar 

  13. O. Coreño-Alonso, A. Duffus-Scott, C. Zánchez-Cornejo, J. Coreño-Alonso, F.S. de Jesús, and A. Bolarín-Miró, On the Effect of σ-Phase Formation During Metal Dusting. Mater. Chem. Phys., 2004, 84(1), p 20–28

    Article  Google Scholar 

  14. K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura, Grain Size Effect on High-Temperature Fatigue Properties of Alloy718. Mater. Lett., 2005, 59(2–3), p 383–386

    Article  CAS  Google Scholar 

  15. M. Ekström, B. Zhu, P. Szakalos, and S. Jonsson, High-temperature corrosion of materials for cast exhaust components, in Conference Proceedings: 7th European Corrosion Congress, Pisa, 2014

  16. M. Ekström and S. Jonsson, High-Temperature Mechanical- and Fatigue Properties of Cast Alloys Intended for Use in Exhaust Manifolds. Mater. Sci. Eng. A, 2014, 616, p 78–87

    Article  Google Scholar 

  17. D.G. Shang, G.Q. Sun, C.L. Yan, J.H. Chen, and N. Cai, Creep-Fatigue Life Prediction Under Fully-Reversed Multiaxial Loading at High Temperatures. Int. J. Fatigue, 2007, 29(4), p 705–712

    Article  CAS  Google Scholar 

  18. T. Inoue, M. Okazaki, T. Igari, M. Sakane, and S. Kishi, Evaluation of Fatigue-Creep Life Prediction Methods in Multiaxial Stress State. Nucl. Eng. Des., 1991, 126, p 13–21

    Article  CAS  Google Scholar 

  19. J.H. Bulloch and P.J. Bernard, A Remaining Life Assessment of a Cracked Attemperator Steam Line. Eng. Fail. Anal., 2001, 8(6), 529–540

    Article  Google Scholar 

  20. T. Ogata and M. Yaguchi, Damage Mechanism in Weldment of 2.25Cr–1Mo Steel Under Creep–Fatigue Loading. Eng. Fract. Mech., 2007, 74(6), p 947–955

    Article  Google Scholar 

  21. J.W. Elmer, T.A. Palmer, and E.D. Specht, In Situ Observations of Sigma Phase Dissolution in 2205 Duplex Stainless Steel Using Synchrotron X-Ray Diffraction. Mater. Sci. Eng., 2007, 459, p 151–155

    Article  Google Scholar 

  22. A.V. Kington and F.W. Noble, σ Phase Embrittlement of a Type 310 Stainless Steel. Mater. Sci. Eng. A, 1991, 138(2), p 259–266

    Article  Google Scholar 

  23. J. Barcik, The Kinetics of σ-Phase Precipitation in AISI310 and AISI316 Steels. Metall. Mater. Trans. A, 1983, 14(3), p 635–641

    Article  CAS  Google Scholar 

  24. H.D. Solomon and T.M. Devine, Duplex Stainless Steels: A Tale of Two Phases, October 23–28, 1982, American Society for Metals, St. Louis, MO, 1983, pp 693–756

  25. J. Sedriks, Corrosion of Stainless Steels, 2nd edn., Wiley, New York, 1996, p 22

    Google Scholar 

  26. S.A.J. Jahromi, S. Javadpour, and K. Gheisari, Failure Analysis of Welded Joints in a Power Plant Exhaust Flue. Eng. Fail. Anal., 2006, 13(4), p 527–536

    Article  CAS  Google Scholar 

  27. R.W.K. Honeycombe, Steels: Microstructure and Properties, 2nd edn., Arnold, London, 1995

    Google Scholar 

  28. B. Piekarski and J. Kubicki, Creep-Resistant Austenitic Cast Steel. Arch. Foundry Eng., 2008, 8(2), p 115–120

    CAS  Google Scholar 

  29. A. Drotlew, M. Garbiak, and B. Piekarski, Cast Steels for Creep-Resistant Parts Used in Heat Treatment Plants. Arch. Foundry Eng., 2012, 12(4), p 31–38

    Article  CAS  Google Scholar 

  30. A.F. Padilha and P.R. Rios, Decomposition of Austenite in Austenitic Stainless Steels. ISIJ Int., 2002, 42(4), p 325–337

    Article  CAS  Google Scholar 

  31. S. Lamb and J.E. Bringas, Practical Handbook of Stainless Steels and Nickel Alloys, 1st edn., ASM International, Materials Park, 1999

    Google Scholar 

  32. M.C. Blair, Cast Stainless Steels, Metals Handbook, 1st edn., ASM International, Materials Park, OH, 1990, p 908

    Google Scholar 

  33. D. Peckner and I.M. Bernstein, Handbook of Stainless Steels, McGraw-Hill, New York, 1977

    Google Scholar 

  34. S.J. Zhu, Y. Wang, and F.G. Wang, Comparison of the Creep Crack Growth Resistance of HK40 and HP40 Heat-Resistant Steels. J. Mater. Sci. Lett., 1990, 9(5), p 520–521

    Article  CAS  Google Scholar 

  35. R.I. Pankiw, D.P. Voke, G. Muralidharan, N.D. Evans, C.O. Stevens, K.C. Liu, M.L. Santella, P.J. Maziasz, and V.K. Sikka, Precipitation and its effect on the design of cast heat resistant alloys, in Corrosion, 2007, p 7424

  36. H.M. Ezuber, A. El-Houd, and F. El-Shawesh, Effects of Sigma Phase Precipitation on Seawater Pitting of Duplex Stainless Steel. Desalination, 2007, 207, p 268–275

    Article  CAS  Google Scholar 

  37. D.Y. Kobayashi and S. Wolynec, Evaluation of the Low Corrosion Resistant Phase Formed During the Sigma Phase Precipitation in Duplex-Stainless Steels. Mater. Res., 1999, 2(4), p 239–247

    Article  CAS  Google Scholar 

  38. M.C. Blair, Cast Stainless Steels, Metals Handbook, vol. 1, ASM International, Materials Park, 1990, p 908

    Google Scholar 

  39. N. Lopez, N. Cid, and M. Puiggali, Influence of σ-Phase on Mechanical Properties and Corrosion Resistance of Duplex Stainless Steels. Corros. Sci., 1999, 41(8), p 1615–1631

    Article  CAS  Google Scholar 

  40. I. Zucato, M.C. Moreira, I.F. Machado, and S.M. Lebrao, Microstructural Characterization and the Effect of Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C. Mater. Res.5(3), p 385–389

    Article  CAS  Google Scholar 

  41. D.A. Hansen and R.B. Puyear, Materials Selection for Hydrocarbon and Chemical Plants, Marcel Dekker, INC, New York, 1996

    Google Scholar 

  42. J. Hau and A. Seijas, Sigma phase embrittlement of stainless steel in FCC service, in Corrosion, 2006, p 6578

  43. S.D. Cramer and B.S. Covino Jr., Corrosion, Metals Handbook, vol. 13, ASM International, Metals Park, OH, 1987, p 11

    Google Scholar 

  44. K. Natesan, Materials performance in coal fluidized bed combustion environment, in 10th International Pittsburgh Coal Conference, September 20–24, Pittsburgh, PA, 1993

  45. G.F. Vander Voort, Properties and Selection: Iron Steels and High Performance Alloys, Metals Handbook, vol. 1, 10th edn., ASM International, Metals Park, 2001, p 709

    Google Scholar 

  46. J. Li, T. Wu, and Y. Riquier, Sigma Phase Precipitation and its Effect on the Mechanical Properties of a Super Duplex Stainless Steel. Mater. Sci. Eng. A, 1994, 174, p 149–156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Jaworski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaworski, A., Krawczyk, Ł. & Kubiak, K. Turbine Housing Failure Due to Sigma Phase Precipitation and Embrittlement of Niobium-Stabilized Austenitic Steel Casting. J. of Materi Eng and Perform 29, 1535–1543 (2020). https://doi.org/10.1007/s11665-020-04626-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04626-y

Keywords

Navigation