Skip to main content
Log in

Layered 50Cr6Ni2/Stellite X-40 Multi-material Fabricated by Direct Laser Deposition: Characterization and Properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Fretting damage under high temperature corrosion and wear condition is one of the main factors that cause the failure of the key parts of mechanical and electrical equipment, and laser cladding wear-resistant and corrosion-resistant coating is the main technology to repair these failure key parts. In this paper, the layered 50Cr6Ni2/Stellite X-40 multi-material was prepared by direct laser deposition (DLD) using wear-resistant Fe-based alloy and corrosion-resistant Co-based alloy, to meet the needs of repair and remanufacturing of key parts with fretting damage. The results show that the layered 50Cr6Ni2/Stellite X-40 composite material retains their respective microstructures and excellent properties. The microstructure of the 50Cr6Ni2 layer mainly contains martensite and granular bainite, the microstructure of the Stellite X-40 layer consists of dendrite and eutectic structure. The layered 50Cr6Ni2/Stellite X-40 composite material has both good wear resistance (wear mass loss is 1.0 mg) and good corrosion resistance (− 0.37549 of Ecorr and 0.00032 of icorr). The DLD layered 50Cr6Ni2/Stellite X-40 composite material could meet the demand of short stress path rolling mill remanufacturing.

Graphic Abstract

In order to meet the needs of repair and remanufacturing of key parts with fretting damage, the layered 50Cr6Ni2/Stellite X-40 multi-material was prepared by direct laser deposition (DLD) using wear-resistant Fe-based alloy and corrosion-resistant Co-based alloy. As shown in Fig. 1a, the samples were fabricated by using the DLD system. Figure 1b, c shows the EBSD analysis of the layered 50Cr6Ni2/Stellite X-40 multi-material at the interface, which clearly displays the existence of the interface. In some regions, blocky retained austenite can be found (Fig. 1d), and it can be clearly observed that the substructure within granular bainite are sheaves with lath-shaped in Fig. 1e. In the 50Cr6Ni2 layer of layered multi-material, the microstructure mainly contained martensite (Fig. 1f, g). Figure 1h, i show that the layered 50Cr6Ni2/Stellite X-40 composite material has both good wear resistance and good corrosion resistance. The results show that the layered 50Cr6Ni2/Stellite X-40 composite material retains their respective microstructures and excellent properties, and it could meet the demand of short stress path rolling mill remanufacturing. Layered 50Cr6Ni2/Stellite X-40 multi-material fabricated by direct laser deposition: characterization and properties (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.J. Li, S.Y. Dong, S.X. Yan, X.T. Liu, P. He, B.S. Xu, Surf. Coat. Technol. 20, 347 (2018)

    Google Scholar 

  2. A. Riquelme, P. Rodrigo, M.D. Escalera-Rodríguez, J. Rams, Opt. Lasers Eng. 165, 78 (2016)

    Google Scholar 

  3. Z. Zhao, J. Chen, H. Tan, X.L. Zhao, W.D. Huang, Rare Metal Mater. Eng. 1792, 46 (2017)

    Google Scholar 

  4. Y. Zhu, Y. Yang, X. Mu, W. Wang, Z. Yao, H. Yang, Wear 126, 430 (2019)

    Google Scholar 

  5. H.M. Chen, F.C. Liu, G. Yang, C. Zhong, X. Lin, C.P. Huang, Rare Metal Mater. Eng. 2949, 47 (2018)

    Google Scholar 

  6. J.M. Wilson, C. Piya, Y.C. Shin, F. Zhao, K. Ramani, J. Clean. Prod. 170, 80 (2014)

    Google Scholar 

  7. S.T. Peng, T. Li, M.Y. Li, Y.C. Guo, J.L. Shi, G.Z. Tan, H.C. Zhang, J. Clean. Prod. 598, 206 (2019)

    Google Scholar 

  8. H.D. Zheng, E.Z. Li, Y. Wang, P.J. Shi, B.S. Xu, S.L. Yang, Robot. Comput. Integr. Manuf. 213, 59 (2019)

    Article  Google Scholar 

  9. Z.B. Xu, J.F. Peng, J.H. Liu, X.Y. Liu, W.L. Zhang, M.H. Zhu, Wear 704, 426 (2019)

    Google Scholar 

  10. J.F. Peng, B.T. Wang, X. Jin, Z.B. Xu, J.H. Liu, Z.B. Cai, Z.P. Luo, M.H. Zhu, Tribol. Int. 1, 137 (2019)

    Google Scholar 

  11. W.J. Chen, H. Chen, C.C. Li, X.L. Wang, Q. Cai, Eng. Fail. Anal. 120, 79 (2017)

    Google Scholar 

  12. J.H. Jang, B.D. Joo, S.M. Mun, M.Y. Sung, Y.H. Moon, Met. Mater. Int. 17, 167 (2011)

    Article  CAS  Google Scholar 

  13. J.M.S.D. Sousa, F. Ratusznei, M. Pereira, R.D.M. Castro, E.I.M. Curi, Tribol. Int. 106002, 143 (2020)

    Google Scholar 

  14. G.Y. Baek, G.Y. Shin, E.M. Lee, D.S. Shim, K.Y. Lee, H.S. Yoon, M.H. Kim, Met. Mater. Int. 23, 770 (2017)

    Article  CAS  Google Scholar 

  15. J. Zhao, Q.W. Gao, H.Q. Wang, F.Y. Shu, H.Y. Zhao, W.X. He, Z.S. Yu, J. Alloys Compd. 846, 785 (2019)

    Google Scholar 

  16. X. Li, C.H. Zhang, S. Zhang, C.L. Wu, Y. Liu, J.B. Zhang, M.B. Shahzad, Opt. Laser Technol. 209, 114 (2019)

    Article  Google Scholar 

  17. B.C. Li, H.M. Zhu, C.J. Qiu, X.K. Gong, Mater. Lett. 126829, 259 (2020)

    Google Scholar 

  18. M.N. Fesharaki, R. Shoja-Razavi, H.A. Mansouri, H. Jamali, Opt. Laser Technol. 744, 111 (2019)

    Google Scholar 

  19. E. Diaz, J.M. Amado, J. Montero, M.J. Tobar, A. Yanez, Phys. Proc. 368, 39 (2012)

    Google Scholar 

  20. M. Nabhani, R.S. Razavi, M. Barekat, Eng. Fail. Anal. 234, 97 (2019)

    Google Scholar 

  21. B. Heer, A. Bandyopadhyay, Mater. Lett. 16, 216 (2018)

    Google Scholar 

  22. B. Onuike, A. Bandyopadhyay, Addit. Manuf. 576, 27 (2019)

    Google Scholar 

  23. H. Sahasrabudhe, R. Harrison, C. Carpenter, A. Bandyopadhyay, Addit. Manuf. 1, 5 (2015)

    Google Scholar 

  24. C. Shang, C.Y. Wang, G.J. Xu, C.F. Li, J.H. You, Vacuum 108888, 169 (2019)

    Google Scholar 

  25. P.F. Zuo, S.Y. Chen, M.Y. Wei, L. Zhou, J. Liang, C.S. Liu, M. Wang, J. Mater. Process Technol. 28, 444 (2019)

    Google Scholar 

  26. Y. Zhou, S.Y. Chen, X.T. Chen, T. Cui, J. Liang, C.S. Liu, Mater. Sci. Eng. A 150, 742 (2019)

    Google Scholar 

  27. T.T. Guan, S.Y. Chen, X.T. Chen, J. Liang, C.S. Liu, M. Wang, J Mater. Sci. Technol. 395, 35 (2019)

    Google Scholar 

  28. M.Y. Wei, S.Y. Chen, L.Y. Xi, J. Liang, C.S. Liu, Opt. Laser Technol. 99, 107 (2018)

    Article  Google Scholar 

  29. L. Parry, I.A. Ashcroft, R.D. Wildman, Addit. Manuf. 1, 12 (2016)

    Google Scholar 

  30. J.Y. Shao, G. Yu, X.L. He, S.X. Li, R. Chen, Y. Zhao, Opt. Laser Technol. 105662, 119 (2019)

    Google Scholar 

  31. N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 154, 145 (2018)

    Google Scholar 

  32. S.S. Liu, Y.H. Wang, W.P. Zhang, Rare Metal Mater. Eng. 1041, 43 (2014)

    Google Scholar 

  33. S.L. Sing, L.P. Lam, D.Q. Zhang, Z.H. Liu, C.K. Chua, Mater. Charact. 107, 220–227 (2015)

    Article  CAS  Google Scholar 

  34. K. Peng, C.L. Yang, C.L. Fan, S.B. Lin, J. Mater. Process Technol. 225, 251 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB1100201), the Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017), the Research and development plan for the future emerging industries in Shenyang (18-004-2-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiyuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Chen, S., Zhang, C. et al. Layered 50Cr6Ni2/Stellite X-40 Multi-material Fabricated by Direct Laser Deposition: Characterization and Properties. Met. Mater. Int. 27, 40–49 (2021). https://doi.org/10.1007/s12540-020-00675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00675-z

Keywords

Navigation