Skip to main content

Advertisement

Log in

Targeted cancer cell delivery of arsenate as a reductively activated prodrug

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanoformulations, prodrugs, and targeted therapies are among the most intensively investigated approaches to new cancer therapeutics. Human ferritin has been used extensively as a nanocarrier for the delivery of drugs and imaging agents to cancerous tumor cells both in vitro and in vivo. We report exploitation of the native properties of ferritin, which can be co-loaded with simple forms of iron (FeOOH) and arsenic (arsenate) in place of the native phosphate. The As(III) form arsenic trioxide has been successfully used to treat one blood cancer, but has so far proven too systemically toxic for use on solid tumors in the clinic. The As(V) form, arsenate, on the other hand, while much less systemically toxic upon bolus injection has also proven ineffective for cancer therapy. We extended the C-terminal ends of the human ferritin subunits with a tumor cell receptor targeting peptide and loaded this modified ferritin with ~ 800 arsenates and ~ 1100 irons. Our results demonstrate targeting and uptake of the iron, arsenate-loaded modified human ferritin by breast cancer cells. At the same arsenic levels, the cytotoxicity of the iron, arsenate-loaded human ferritin was equivalent to that of free arsenic trioxide and much greater than that of free arsenate. The iron-only loaded human ferritin was not cytotoxic at the highest achievable doses. The results are consistent with the receptor-targeted human ferritin delivering arsenate as a reductively activated ‘prodrug’. This targeted delivery could be readily adapted to treat other types of solid tumor cancers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu JX, Zhou GB, Chen SJ, Chen Z (2012) Curr Opin Chem Biol 16:92–98

    Article  CAS  Google Scholar 

  2. Swindell EP, Hankins PL, Chen H, Miodragovic DU, O'Halloran TV (2013) Inorg Chem 52:12292–12304

    Article  CAS  Google Scholar 

  3. Hoonjan M, Jadhav V, Bhatt P (2018) J Biol Inorg Chem 23:313–329

    Article  CAS  Google Scholar 

  4. Zangi R, Filella M (2012) Chem-Biol Interact 197:47–57

    Article  CAS  Google Scholar 

  5. Ahn RW, Chen F, Chen H, Stern ST, Clogston JD, Patri AK, Raja MR, Swindell EP, Parimi V, Cryns VL, O'Halloran TV (2010) Clin Cancer Res 16:3607–3617

    Article  CAS  Google Scholar 

  6. Zhao ZH, Zhang H, Chi XQ, Li H, Yin ZY, Huang DT, Wang XM, Gao JH (2014) J Mater Chem B 2:6313–6323

    Article  CAS  Google Scholar 

  7. Zhao Z, Wang X, Zhang Z, Zhang H, Liu H, Zhu X, Li H, Chi X, Yin Z, Gao J (2015) ACS Nano 9:2749–2759

    Article  CAS  Google Scholar 

  8. Wu X, Han Z, Schur RM, Lu Z-R (2016) ACS Biomater Sci Eng 2:501–507

    Article  CAS  Google Scholar 

  9. Akhtar A, Wang SX, Ghali L, Bell C, Wen X (2017) J Biomed Res 31:177–188

    PubMed  PubMed Central  Google Scholar 

  10. Ebrahimi KH, Hagedoorn PL, Hagen WR (2015) Chem Rev 115:295–326

    Article  Google Scholar 

  11. Polanams J, Ray AD, Watt RK (2005) Inorg Chem 44:3203–3209

    Article  CAS  Google Scholar 

  12. Nemeti B, Gregus Z (2002) Toxicol Sci 70:4–12

    Article  CAS  Google Scholar 

  13. Watt GD, Frankel RB, Papaefthymiou GC, Spartalian K, Stiefel EI (1986) Biochemistry 25:4330–4336

    Article  CAS  Google Scholar 

  14. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X (2014) Proc Natl Acad Sci USA 111:14900–14905

    Article  CAS  Google Scholar 

  15. Hasan MR, Tosha T, Theil EC (2008) J Biol Chem 283:31394–31400

    Article  CAS  Google Scholar 

  16. Masuda T, Goto F, Yoshihara T, Mikami B (2010) Biochem Biophys Res Commun 400:94–99

    Article  CAS  Google Scholar 

  17. Truffi M, Fiandra L, Sorrentino L, Monieri M, Corsi F, Mazzucchelli S (2016) Pharmacol Res 107:57–65

    Article  CAS  Google Scholar 

  18. Li L, Fang CJ, Ryan JC, Niemi EC, Lebron JA, Bjorkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, Seaman WE (2010) Proc Natl Acad Sci USA 107:3505–3510

    Article  CAS  Google Scholar 

  19. Vannucci L, Falvo E, Fornara M, Di Micco P, Benada O, Krizan J, Svoboda J, Hulikova-Capkova K, Morea V, Boffi A, Ceci P (2012) Int J Nanomed 7:1489–1509

    CAS  Google Scholar 

  20. Zhen ZP, Tang W, Chen HM, Lin X, Todd T, Wang G, Cowger T, Chen XY, Xie J (2013) ACS Nano 7:4830–4837

    Article  CAS  Google Scholar 

  21. Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) J Am Chem Soc 128:16626–16633

    Article  CAS  Google Scholar 

  22. Lee JH, Seo HS, Song JA, Kwon KC, Lee EJ, Kim HJ, Lee EB, Cha YJ, Lee J (2013) ACS Nano 7:10879–10886

    Article  CAS  Google Scholar 

  23. Lee EJ, Lee SJ, Kang YS, Ryu JH, Kwon KC, Jo E, Yhee JY, Kwon IC, Kim K, Lee J (2015) Adv Funct Mat 25:1279–1286

    Article  CAS  Google Scholar 

  24. Roskoski R Jr (2014) Pharmacol Res 79:34–74

    Article  CAS  Google Scholar 

  25. Park HS, Jang MH, Kim EJ, Kim HJ, Lee HJ, Kim YJ, Kim JH, Kang E, Kim SW, Kim IA, Park SY (2014) Modern Pathol 27:1212–1222

    Article  CAS  Google Scholar 

  26. Nakajima H, Ishikawa Y, Furuya M, Sano T, Ohno Y, Horiguchi J, Oyama T (2014) Breast Cancer 21:66–74

    Article  Google Scholar 

  27. Kalimutho M, Parsons K, Mittal D, Lopez JA, Srihari S, Khanna KK (2015) Trends Pharmacol Sci 36:822–846

    Article  CAS  Google Scholar 

  28. Mickler FM, Mockl L, Ruthardt N, Ogris M, Wagner E, Brauchle C (2012) Nano Lett 12:3417–3423

    Article  CAS  Google Scholar 

  29. Tang H, Chen X, Rui M, Sun W, Chen J, Peng J, Xu Y (2014) Mol Pharmaceut 11:3242–3250

    Article  CAS  Google Scholar 

  30. Song S, Liu D, Peng J, Sun Y, Li Z, Gu JR, Xu Y (2008) Int J Pharmaceut 363:155–161

    Article  CAS  Google Scholar 

  31. Tabor S (1990) In: Ausubel FA, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 16.12.11–16.12.11

    Google Scholar 

  32. Baaghil S, Lewin A, Moore GR, Le Brun NE (2003) Biochemistry 42:14047–14056

    Article  CAS  Google Scholar 

  33. Hirayama T, Okuda K, Nagasawa H (2013) Chem Sci 4:1250–1256

    Article  CAS  Google Scholar 

  34. Lee BR, Ko HK, Ryu JH, Ahn KY, Lee YH, Oh SJ, Na JH, Kim TW, Byun Y, Kwon IC, Kim K, Lee J (2016) Sci Rep 6:35182

    Article  CAS  Google Scholar 

  35. Ahmad S, Kitchin KT, Cullen WR (2000) Arch Biochem Biophys 382:195–202

    Article  CAS  Google Scholar 

  36. Bienfait HF, van den Briel ML (1980) Biochim Biophys Acta 631:507–510

    Article  CAS  Google Scholar 

  37. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q (2014) Sci Transl Med 6:222ra218

    Google Scholar 

  38. Baj G, Arnulfo A, Deaglio S, Mallone R, Vigone A, De Cesaris MG, Surico N, Malavasi F, Ferrero E (2002) Breast Cancer Res Treat 73:61–73

    Article  CAS  Google Scholar 

  39. Zhang L, Zhang Z, Mason RP, Sarkaria JN, Zhao D (2015) Sci Rep 5:9874

    Article  CAS  Google Scholar 

  40. Miodragovic D, Swindell EP, Waxali ZS, Bogachkov A, O'Halloran TV (2019) Inorg Chim Acta 496:119030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Beth A. Goins. This research was supported by a Grant from the Cancer Prevention and Research Institute of Texas (RP110165). The Biophotonics Core facility and Flow Cytometry Core facility at the University of Texas at San Antonio (UTSA) are supported by a Grant from the National Institute on Minority Health and Health Disparities from the National Institutes of Health (G12MD007591). H. Shipley in the UTSA Department of Civil and Environmental Engineering, and K. Nash in the UTSA Department of Physics and Astronomy provided access to ICP-OES and DLS instrumentation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. Kurtz Jr..

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cioloboc, D., Kurtz, D.M. Targeted cancer cell delivery of arsenate as a reductively activated prodrug. J Biol Inorg Chem 25, 441–449 (2020). https://doi.org/10.1007/s00775-020-01774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01774-3

Keywords

Navigation