Skip to main content

Advertisement

Log in

Short stems for total hip replacement among middle-aged patients

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Introduction

The purpose of the present study was to investigate the role of short stem implants for primary total hip arthroplasty in middle-aged patients. For this purpose, a meta-analysis of the current literature was conducted. The focus was on clinical outcomes,radiological parameters, and further complications of both components.

Material and methods

The study was performed according to the PRISMA guidelines. All randomized and non-randomized clinical trials comparing short stem versus standard stem prostheses for THA were considered for inclusion. Only studies reporting data concerning uncemented stems for primary total hip arthroplasty were included. Only studies reporting data concerning patients with a mean age of 45 to 69 were included.

Results

A total of 2197 procedures in 2116 patients were analysed. The mean follow-up was 30.2 months. The short stem group showed a statistically significant higher WOMAC score and a reduced total estimated blood loss compared with the standard stem group. The short stem group showed a reduced rate of femoral fractures, dislocations, and revision, but without statistical significance.

Conclusions

According to the main findings of this meta-analysis and current evidence, we encourage the use of the uncemented short stems during primary total hip arthroplasty in middle-aged patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurtz SM, Ong KL, Lau E, Bozic KJ (2014) Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am 96(8):624–630. https://doi.org/10.2106/JBJS.M.00285

    Article  PubMed  Google Scholar 

  2. Godefroy D, Rousselin B, Sarazin L (2011) Hip degeneration. J Radiol 92(6):581–593. https://doi.org/10.1016/j.jradio.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Ateschrang A, Weise K, Weller S, Stockle U, de Zwart P, Ochs BG (2014) Long-term results using the straight tapered femoral cementless hip stem in total hip arthroplasty: a minimum of twenty-year follow-up. J Arthroplast 29(8):1559–1565. https://doi.org/10.1016/j.arth.2014.02.015

    Article  Google Scholar 

  4. Castelli CC, Rizzi L (2014) Short stems in total hip replacement: current status and future. Hip Int 24(Suppl 10):S25–S28. https://doi.org/10.5301/hipint.5000169

    Article  PubMed  Google Scholar 

  5. Ettinger M, Ettinger P, Lerch M, Radtke K, Budde S, Ezechieli M, Becher C, Thorey F (2011) The NANOS short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21(5):583–586. https://doi.org/10.5301/HIP.2011.8658

    Article  PubMed  Google Scholar 

  6. Gustke K (2012) Short stems for total hip arthroplasty: initial experience with the Fitmore stem. J Bone Joint Surg (Br) 94(11 Suppl a):47–51. https://doi.org/10.1302/0301-620X.94B11.30677

    Article  CAS  Google Scholar 

  7. Hennessy DW, Callaghan JJ, Liu SS (2009) Second-generation extensively porous-coated THA stems at minimum 10-year followup. Clin Orthop Relat Res 467(9):2290–2296. https://doi.org/10.1007/s11999-009-0831-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim YH (2005) Long-term results of the cementless porous-coated anatomic total hip prosthesis. J Bone Joint Surg (Br) 87(5):623–627. https://doi.org/10.1302/0301-620X.87B5.15554

    Article  Google Scholar 

  9. McLaughlin JR, Lee KR (2008) Total hip arthroplasty with an uncemented tapered femoral component. J Bone Joint Surg Am 90(6):1290–1296. https://doi.org/10.2106/JBJS.G.00771

    Article  PubMed  Google Scholar 

  10. Gruner A, Heller KD (2015) Patient selection for shorter femoral stems. Orthopedics 38(3 Suppl):S27–S32. https://doi.org/10.3928/01477447-20150215-53

    Article  PubMed  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  12. Howick J, Chalmers I, Glasziou P, Greenhalgh T, Heneghan C, Liberati A, Moschetti I, Phillips B, Thornton H, Goddard O, Hodgkinson M (2011) The 2011 Oxford levels of evidence. Oxford Centre for Evidence-Based Medicine. Available at: https://www.cebm.net/index.aspx?o=5653 accessed on July 2019

  13. Nilsdotter A, Bremander A (2011) Measures of hip function and symptoms: Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), Oxford Hip Score (OHS), Lequesne Index of Severity for Osteoarthritis of the Hip (LISOH), and American Academy of Orthopedic Surgeons (AAOS) Hip and Knee Questionnaire. Arthritis Care Res (Hoboken) 63(Suppl 11):S200–S207. https://doi.org/10.1002/acr.20549

    Article  Google Scholar 

  14. Ackerman IN, Tacey MA, Ademi Z, Bohensky MA, Liew D, Brand CA (2014) Using WOMAC Index scores and personal characteristics to estimate Assessment of Quality of Life utility scores in people with hip and knee joint disease. Qual Life Res 23(8):2365–2374. https://doi.org/10.1007/s11136-014-0667-y

    Article  PubMed  Google Scholar 

  15. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ. 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Oldenrijk J, Scholtes VAB, van Beers L, Geerdink CH, Niers B, Runne W, Bhandari M, Poolman RW, collaborative Ctr (2017) Better early functional outcome after short stem total hip arthroplasty? A prospective blinded randomised controlled multicentre trial comparing the collum femoris preserving stem with a Zweymuller straight cementless stem total hip replacement for the treatment of primary osteoarthritis of the hip. BMJ Open 7(10):e014522. https://doi.org/10.1136/bmjopen-2016-014522

    Article  PubMed  PubMed Central  Google Scholar 

  17. Freitag T, Hein MA, Wernerus D, Reichel H, Bieger R (2016) Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg 136(1):125–130. https://doi.org/10.1007/s00402-015-2370-z

    Article  PubMed  Google Scholar 

  18. Gotze C, Ehrenbrink J, Ehrenbrink H (2010) Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall 148(4):398–405. https://doi.org/10.1055/s-0030-1250151

    Article  CAS  PubMed  Google Scholar 

  19. Henry BM, Wrazen W, Hynnekleiv L, Klosinski M, Pekala PA, Kucharska E, Golec EB, Tomaszewski KA, Pachalska M (2016) Health-related quality-of-life and functional outcomes in short-stem versus standard-stem total hip Arthroplasty: an 18-month follow-up cohort study. Med Sci Monit 22:4406–4414

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hossain F, Konan S, Volpin A, Haddad FS (2017) Early performance-based and patient-reported outcomes of a contemporary taper fit bone-conserving short stem femoral component in total hip arthroplasty. Bone Joint J 99-B(4 Supple B):49–55. https://doi.org/10.1302/0301-620X.99B4.BJJ-2016-1291.R1

    Article  CAS  PubMed  Google Scholar 

  21. Kim YH, Choi Y, Kim JS (2011) Comparison of bone mineral density changes around short, metaphyseal-fitting, and conventional cementless anatomical femoral components. J Arthroplast 26(6):931–940 e931. https://doi.org/10.1016/j.arth.2010.10.001

    Article  Google Scholar 

  22. McCalden RW, Korczak A, Somerville L, Yuan X, Naudie DD (2015) A randomised trial comparing a short and a standard-length metaphyseal engaging cementless femoral stem using radiostereometric analysis. Bone Joint J 97-B(5):595–602. https://doi.org/10.1302/0301-620X.97B5.34994

    Article  CAS  PubMed  Google Scholar 

  23. Molli RG, Lombardi AV Jr, Berend KR, Adams JB, Sneller MA (2012) A short tapered stem reduces intraoperative complications in primary total hip arthroplasty. Clin Orthop Relat Res 470(2):450–461. https://doi.org/10.1007/s11999-011-2068-7

    Article  PubMed  Google Scholar 

  24. Romano CL, Romano D, Logoluso N, Meani E (2010) Long-stem versus short-stem preformed antibiotic-loaded cement spacers for two-stage revision of infected total hip arthroplasty. Hip Int 20(1):26–33

    Article  PubMed  Google Scholar 

  25. Shin YS, Suh DH, Park JH, Kim JL, Han SB (2016) Comparison of specific femoral short stems and conventional-length stems in primary cementless total hip arthroplasty. Orthopedics 39(2):e311–e317. https://doi.org/10.3928/01477447-20160222-04

    Article  PubMed  Google Scholar 

  26. Tahim AS, Stokes OM, Vedi V (2012) The effect of femoral stem length on duration of hospital stay. Hip Int 22(1):56–61. https://doi.org/10.5301/HIP.2012.9035

    Article  PubMed  Google Scholar 

  27. Tomaszewski W, Kotela I, Kawik L, Bednarenko M, Lorkowski J, Kotela A (2013) Quality of live of patients in the evaluation of outcomes of short stem hip arthroplasty for hip osteoarthritis. Ortop Traumatol Rehabil 15(5):439–457. https://doi.org/10.5604/15093492.1084359

    Article  PubMed  Google Scholar 

  28. von Roth P, Perka C, Mayr HO, Preininger B, Ziebula F, Matziolis G, Hube R (2014) Reproducibility of femoral offset following short stem and straight stem total hip arthroplasty. Orthopedics 37(7):e678–e684. https://doi.org/10.3928/01477447-20140626-61

    Article  Google Scholar 

  29. Falez F, Casella F, Papalia M (2015) Current concepts, classification, and results in short stem hip arthroplasty. Orthopedics 38(3 Suppl):S6–S13. https://doi.org/10.3928/01477447-20150215-50

  30. Schilcher J, Ivarsson I, Perlbach R, Palm L (2017) No difference in periprosthetic bone loss and fixation between a standard-length stem and a shorter version in cementless total hip arthroplasty. A randomized controlled trial. J Arthroplast 32(4):1220–1226. https://doi.org/10.1016/j.arth.2016.11.015

  31. Wittenberg RH, Steffen R, Windhagen H, Bucking P, Wilcke A (2013) Five-year results of a cementless short-hip-stem prosthesis. Orthop Rev (Pavia) 5(1):e4. https://doi.org/10.4081/or.2013.e4

    Article  Google Scholar 

  32. Head WC, Bauk DJ, Emerson RH Jr (1995) Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res 311:85–90

    Google Scholar 

  33. Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    Google Scholar 

  34. Huiskes R (1990) The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop Relat Res 261:27–38

    Google Scholar 

  35. Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO (1993) ESB Research Award 1992. The mechanism of bone remodeling and resorption around press-fitted THA stems. J Biomech 26(4–5):369–382

    Article  PubMed  Google Scholar 

  36. Engh CA Jr, Young AM, Engh CA Sr, Hopper RH Jr (2003) Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res 417:157–163. https://doi.org/10.1097/01.blo.0000096825.67494.e3

    Article  Google Scholar 

  37. Lindahl H (2007) Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury 38(6):651–654. https://doi.org/10.1016/j.injury.2007.02.048

    Article  PubMed  Google Scholar 

  38. Taylor M, Tanner KE (1997) Fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J Bone Joint Surg (Br) 79(2):181–182

    Article  CAS  Google Scholar 

  39. Wilkinson JM, Hamer AJ, Rogers A, Stockley I, Eastell R (2003) Bone mineral density and biochemical markers of bone turnover in aseptic loosening after total hip arthroplasty. J Orthop Res 21(4):691–696. https://doi.org/10.1016/S0736-0266(02)00237-1

    Article  CAS  PubMed  Google Scholar 

  40. Leali A, Fetto J, Insler H, Elfenbein D (2002) The effect of a lateral flare feature on implant stability. Int Orthop 26(3):166–169. https://doi.org/10.1007/s00264-002-0355-3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dabirrahmani D, Hogg M, Kohan L, Gillies M (2010) Primary and long-term stability of a short-stem hip implant. Proc Inst Mech Eng H 224(9):1109–1119. https://doi.org/10.1243/09544119JEIM704

    Article  CAS  PubMed  Google Scholar 

  42. Bieger R, Ignatius A, Decking R, Claes L, Reichel H, Dürselen L (2012) Primary stability and strain distribution of cementless hip stems as a function of implant design. Clin Biomech (Bristol, Avon) 27(2):158–164

    Article  Google Scholar 

  43. Giardina F, Castagnini F, Stea S, Bordini B, Montalti M, Toni A (2018) Short stems versus conventional stems in cementless total hip arthroplasty: a long-term registry study. J Arthroplast. https://doi.org/10.1016/j.arth.2018.01.005

  44. Arno S, Fetto J, Nguyen NQ et al (2012) Evaluation of femoral strains with cementless proximal-fill femoral implants of varied stem length. Clin Biomech (Bristol, Avon) 27(7):680–685

    Article  Google Scholar 

  45. Swedish hip arthroplasty register. Annual report. Available at www.shpr.se/en/Publications/DocumentsReports.aspx Accessed on August 2019

  46. Norvegian hip arthroplasty register. Available at http://nrlweb.ihelse.net/eng/default.htm Accessed on August 2019

  47. Australien orthopaedic association national joint replacement registry. Annual report. Adelaid: AOA. Available at https://aanjrr.dmac.adelaide.edu.au/de/annual-reports-2013 Accessed on July 2019

  48. Sakalkale DP, Sharkey PF, Eng K, Hozack WJ, Rothman RH (2001) Effect of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res 388:125–134

    Article  Google Scholar 

  49. Lechler P, Frink M, Gulati A, Murray D, Renkawitz T, Bucking B, Ruchholtz S, Boese CK (2014) The influence of hip rotation on femoral offset in plain radiographs. Acta Orthop 85(4):389–395. https://doi.org/10.3109/17453674.2014.931196

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bourne RB, Rorabeck CH (2002) Soft tissue balancing: the hip. J Arthroplast 17(4 Suppl 1):17–22

    Article  Google Scholar 

  51. Mahoney CR, Pellicci PM (2003) Complications in primary total hip arthroplasty: avoidance and management of dislocations. Instr Course Lect 52:247–255

    PubMed  Google Scholar 

  52. McGrory JB, Morrey BF, Cahalan TD (1995) Effect of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg (Br) 77:865

    Article  CAS  Google Scholar 

  53. Bourne RB, Rorabeck CH, Patterson JJ, Guerin J (2001) Tapered titanium cementless total hip replacements: a 10–13 year follow-up study. Clin Orthop Relat Res 393:112

    Article  Google Scholar 

  54. Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplast 20(4):414–420. https://doi.org/10.1016/j.arth.2004.01.016

    Article  Google Scholar 

  55. Tezuka T, Inaba Y, Kobayashi N, Ike H, Kubota S, Kawamura M, Saito T (2015) Effects of hip joint center location and femoral offset on abductor muscle strength after total hip arthroplasty. Mod Rheumatol 25(4):630–636. https://doi.org/10.3109/14397595.2014.988863

    Article  PubMed  Google Scholar 

  56. Bonnin MP, Archbold PH, Basiglini L, Fessy MH, Beverland DE (2012) Do we medialise the hip Centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int 22(4):371–378. https://doi.org/10.5301/HIP.2012.9350

    Article  PubMed  Google Scholar 

  57. Bjarnason JA, Reikeras O (2015) Changes of center of rotation and femoral offset in total hip arthroplasty. Ann Transl Med 3(22):355. https://doi.org/10.3978/j.issn.2305-5839.2015.12.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thakral R, Johnson AJ, Specht SC, Conway JD, Issa K, Mont MA, Herzenberg JE (2014) Limb-length discrepancy after total hip arthroplasty: novel treatment and proposed algorithm for care. Orthopedics 37(2):101–106. https://doi.org/10.3928/01477447-20140124-06

    Article  PubMed  Google Scholar 

  59. Sykes A, Hill J, Orr J, Humphreys P, Rooney A, Morrow E, Beverland D (2015) Patients' perception of leg length discrepancy post total hip arthroplasty. Hip Int 25(5):452–456. https://doi.org/10.5301/hipint.5000276

    Article  PubMed  Google Scholar 

  60. Mihalko WM, Philips MJ, Krackow KA (2001) Acute sciatic and femoral neuritis following total hip arthroplasty. J Bone Joint Surg Am 83:589–592

    Article  CAS  PubMed  Google Scholar 

  61. Amstuz SM, Jinnah RH, Mail L (1982) Revision of aseptic loose total hip arthroplasties. Clin Orthop Relat Res 170:21–33

    Google Scholar 

  62. Gross RH (1978) Leg length discrepancy: how much is too much? Orthopedics 1(4):307–310

    CAS  PubMed  Google Scholar 

  63. Lampe HI, Swierstra BA, Diepstraten AF (1996) Measurement of limb length inequality. Comparison of clinical meth- ods with orthoradiography in 190 children. Acta Orthop Scand 67(3):242–244

    Article  CAS  PubMed  Google Scholar 

  64. Papaioannou T, Stokes I, Kenwright J (1982) Scoliosis associated with limb-length inequality. J Bone Joint Surg Am 64(1):59–62

    Article  CAS  PubMed  Google Scholar 

  65. Abraham WD, Dimon JH 3rd (1992) Leg length discrepancy in total hip arthroplasty. Orthop Clin North Am 23(2):201–209

    CAS  PubMed  Google Scholar 

  66. McCarthy JJ, MacEwen GD (2001) Management of leg length inequality. J South Orthop Assoc 10:73–85

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Migliorini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of Evidence: II, meta-analysis of clinical trials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorini, F., Driessen, A., Colarossi, G. et al. Short stems for total hip replacement among middle-aged patients. International Orthopaedics (SICOT) 44, 847–855 (2020). https://doi.org/10.1007/s00264-020-04516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04516-x

Keywords

Navigation