Skip to main content
Log in

Theoretical Study on Cobalt Ferrite ConFe3−nO4 (n = 1–2) Nanoparticles with Multi-enzyme Activities

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Through on the basis of density functional theory calculations (DFT), harmonic transition state theory and d-band center theory, the reaction mechanism and catalytic activity of Catalase, Superoxide dismutase and Peroxidase activities on the ConFe3−nO4 (n = 1–2) are systematically investigated. The results show that CoFe2O4 is the most stable catalyst with the best catalytic effect. For the simulated activity of catalase, we find that the path-3 (H* and HO* → H2O) is the best on CoFe2O4 and Co2FeO4. For the simulated activity of superoxide dismutase, the path HOO* + HOO → H2O2 + O2 is optimal on CoFe2O4 and Co2FeO4. For the simulated activity of peroxidase, the mechanism on CoFe2O4 and Co2FeO4 is OOH* + H* → H2O + O*, O* + TMB → OH* + oxTMB, OH* + TMB → H2O + oxTMB. The results of these methods are consistent. The results thus provide an in-depth insight into the reaction mechanism and activity of ConFe3−nO4 as catalase, superoxide dismutase and peroxidase mimics and may play a role in the application of nanoparticles as mimics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dong JL, Song L, Yin JJ, He WW, Wu YH, Gu N, Zhang Y (2014) ACS Appl Mater Inter 6:1959–1970

    Article  CAS  Google Scholar 

  2. Adam et al (2007) Nat Nanotechnol 2:535−536

  3. Zhang L, Zhang Q, Li J (2007) Adv Funct Mater 17:1958–1965

    Article  CAS  Google Scholar 

  4. Banholzer MJ, Millstone JE, Qin L et al (2008) Chem Soc Rev 37:885–897

    Article  CAS  Google Scholar 

  5. Zhang X, Huang Y (2015) Anal Methods 7:8640–8646

    Article  CAS  Google Scholar 

  6. Wang XY, Hu YH, Wei H (2016) Inorg Chem Front 3:41–60

    Article  CAS  Google Scholar 

  7. Yang S, He H, Wu D, Chen D, Liang X, Qin Z, Fan M, Zhu J, Yuan P (2009) Appl Catal B 89:527–535

    Article  CAS  Google Scholar 

  8. Mu J, Zhang L, Zhao M et al (2013) J Mol Catal A 378:30–37

    Article  CAS  Google Scholar 

  9. Wang B, Chen F, Peng Y, Wang Z, Liu W et al (2015) Dalton Trans 44:12871–12877

    Article  Google Scholar 

  10. Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Free Radic Res 41:615

    Article  CAS  Google Scholar 

  11. Su L, Feng J, Zhou X et al (2012) Anal Chem 84:5753–5758

    Article  CAS  Google Scholar 

  12. Whitney TM, Jiang JS, Season PC, Chien CL (1993) Science 261:1316–1319

    Article  CAS  Google Scholar 

  13. Piraux L, George JM, Despres JF, Leroy C, Ferain E, Legras RL, Ounadjela K, Fert A (1994) Appl Phys Lett 65:2484–2486

    Article  CAS  Google Scholar 

  14. Zhang HE, Zhang BF, Wang GF, Dong XH, Gao Y (2007) J Magn Magn Mater 312:126–130

    Article  CAS  Google Scholar 

  15. Kulikowski J (1984) J Magn Magn Mater 41:63–65

    Article  CAS  Google Scholar 

  16. Jansi Rani B, Ravina M, Saravanakumar B, Ravi G, Ganesh V, Ravichandran S, Yuvakkumar R (2018) Nano-Struct Nano-Objects 14:84–91

    Article  Google Scholar 

  17. Guo W, Su S, Leng Y, Yi C, Ma Z et al (2013) J Hazard Mater 244–245:736–742

    PubMed  Google Scholar 

  18. Fan Y, Huang Y (2012) Analyst 137:1225–1231

    Article  CAS  Google Scholar 

  19. Martha LLM, Leany LA, Nitza GP, Bianca AI, Oscar P, Yarilyn CM, Felix R et al (2016) Sci Total Environ 550:45–52

    Article  Google Scholar 

  20. Shi W, Zhang X, He S et al (2011) Chem Commun 47:10785–10787

    Article  CAS  Google Scholar 

  21. Zhang K, Zuo W, Wang Z et al (2015) RSC Adv 5:10632–10640

    Article  CAS  Google Scholar 

  22. Han L, Shi JG, Liu AH (2017) Sens Actuators B 252:919–926

    Article  CAS  Google Scholar 

  23. Zope BN, Hibbitts DD, Neurock M (2010) Science 330:74–78

    Article  CAS  Google Scholar 

  24. Pal R, Wang LM, Pei Y, Wang LS, Zeng XC (2012) J Am Chem Soc 134:9438–9445

    Article  CAS  Google Scholar 

  25. Yang B, Gong XQ, Wang HF, Cao XM, Rooney JJ, Hu P (2013) J Am Chem Soc 135:15244–15250

    Article  CAS  Google Scholar 

  26. Liu C, Tan Y, Lin S, Li H, Wu X, Li L et al (2013) J Am Chem Soc 135:2583–2595

    Article  CAS  Google Scholar 

  27. Manzanera-Estrada ME, Cruz-Ramírez M, Flores-Alamo M et al (2017) J Inorg Biochem 175:118–128

    Article  CAS  Google Scholar 

  28. Hao XY, Zhang L, Zheng X, Zong WS, Liu CG et al (2018) Chem-Biol Interact 292:30–36

    Article  CAS  Google Scholar 

  29. Song Y, Qu K, Zhao C et al (2010) Adv Mater 22:2206–2210

    Article  CAS  Google Scholar 

  30. Li J, Liu W, Wu X, Gao X (2015) Biomaterials 48:37–44

    Article  Google Scholar 

  31. Shi W, Wang Q, Long Y et al (2011) Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  32. Gao L, Zhuang J, Nie L et al (2007) Nat Nanotechnol 2:577–583

    Article  CAS  Google Scholar 

  33. Jv Y, Li B, Cao R (2010) Chem Commun 46:8017–8019

    Article  Google Scholar 

  34. Slocik JM, Govorov AO, Naik RR (2008) Angew Chem Int Ed 29:5415–5419

    Article  Google Scholar 

  35. Chen T, Hu Y, Cen Y, Chu X, Lu Y (2013) J Am Chem Soc 135:11595–11602

    Article  CAS  Google Scholar 

  36. Feller D (1996) J Comput Chem 17:1571–1586

    Article  CAS  Google Scholar 

  37. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB (2009) Gaussian, Inc, Wallingford CT

  39. Kundu S, Biswas S, Sau Mondal A, Roy P, Kumar Mondal T (2015) J Mol Struct 1100:27–33

    Article  CAS  Google Scholar 

  40. Ibrahim MM, Ramadan AMM, El Sheshtawy HS, Mohamed MA, Soliman M, Imam S (2015) J Coord Chem 68:4296

    Article  CAS  Google Scholar 

  41. Samuel OE, Huerta-Aguilar CA, Pandiyan T, Monica C, Ivan Alejandro R-D, Tavizon G (2017) J Alloys Compd 695:2706–2716

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, the Natural Science Foundation of Shanxi, and Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province, Graduate student innovation project of Shanxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 945 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhang, Z. & Guo, L. Theoretical Study on Cobalt Ferrite ConFe3−nO4 (n = 1–2) Nanoparticles with Multi-enzyme Activities. Catal Surv Asia 24, 166–177 (2020). https://doi.org/10.1007/s10563-020-09298-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09298-1

Keywords

Navigation