Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Design of a maleimide monomer to achieve precise sequence control and functionalization for an alternating copolymer with vinylphenol

Abstract

We designed an N-phenylmaleimide derivative bearing an activated NHS ester (NHS-PhMI) for radical copolymerization with tert-butoxystyrene (tBOS) to achieve both precise alternating sequence control and functionalization. Essential to the monomer design is the electron-deficient carbon-carbon double bond for precise alternating propagation as well as the facile substitution reaction for the activated ester pendant. The precision of alternating sequences was evaluated by MALDI-TOF-MS analysis in comparison with a series of copolymers. Some amine compounds were quantitatively incorporated onto the maleimide side chain through the aminolysis reaction, whereas the tBOS units were transformed into vinylphenol counterparts via deprotection under acidic conditions. The resultant vinylphenol-based alternating copolymers showed unique solubilities and thermal properties depending on the substituent of the maleimide units.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lutz JF. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym Chem. 2010;1:55–62.

    Article  CAS  Google Scholar 

  2. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:1238149.

    Article  Google Scholar 

  3. Ouchi M, Sawamoto M. Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J. 2018;50:83–94.

    Article  CAS  Google Scholar 

  4. Wagner-Jauregg T. The additional hetero polymerisation. Ber Dtsch Chem Ges B. 1930;63:3213–24.

    Article  Google Scholar 

  5. Klumperman B. Mechanistic considerations on styrene-maleic anhydride copolymerization reactions. Polym Chem. 2010;1:558–62.

    Article  CAS  Google Scholar 

  6. Hirooka M, Yabuuchi H, Iseki J, Nakai Y. Alternating copolymerization through the complexes of conjugated vinyl monomers-alkylaluminum halides. J Polym Sci Part A Polym Chem. 1996;34:2269–84.

    CAS  Google Scholar 

  7. Tesch M, Hepperle JAM, Klaasen H, Letzel M, Studer A. Alternating copolymerization by nitroxide-mediated polymerization and subsequent orthogonal functionalization. Angew Chem Int Ed. 2015;54:5054–9.

    Article  CAS  Google Scholar 

  8. Terada S, Matsumoto A. Role of N-substituents of maleimides on penultimate unit effect for sequence control during radical copolymerization. Polym J. 2019;51:1137–46.

    Article  CAS  Google Scholar 

  9. Oh D, Furuya Y, Ouchi M. Unusual radical copolymerization of suprabulky methacrylate with N-Hydroxysuccinmide acrylate: facile syntheses of alternating-rich copolymers of methacrylic acid and N-Alkyl acrylamide. Macromolecules. 2019;52:8577–86.

    Article  CAS  Google Scholar 

  10. Zhao E, Lam JWY, Meng LM, Hong Y, Deng HQ, Bai GX, et al. Poly (maleic anhydride)-alt-(vinyl acetate): a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules. 2015;48:64–71.

    Article  CAS  Google Scholar 

  11. Saha B, Bauri K, Bag A, Ghorai PK, De P. Conventional fluorophore-free dual pH- and thermo-responsive luminescent alternating copolymer. Polym Chem. 2016;7:6895–6900.

    Article  CAS  Google Scholar 

  12. Huang J, Geng X, Peng C, Grove TZ, Turner SR. Enhanced fluorescence properties of stilbene-containing alternating copolymers. Macromol Rapid Commun. 2018;39:1700530.

    Article  Google Scholar 

  13. O’Shea JP, Solovyeva V, Guo XR, Zhao JP, Hadjichristidis N, Rodionov VO. Sequence-controlled copolymers of 2,3,4,5-pentafluorostyrene: mechanistic insight and application to organocatalysis. Polym Chem. 2014;5:698–701.

    Article  Google Scholar 

  14. Ishido Y, Aburaki R, Kanaoka S, Aoshima S. Well-defined alternating copolymers of benzaldehydes with vinyl ethers: precision synthesis by cationic copolymerization and quantitative degradation to cinnamaldehydes. Macromolecules. 2010;43:3141–4.

    Article  CAS  Google Scholar 

  15. Hill MR, Guegain E, Tran J, Figg CA, Turner AC, Nicolas J, et al. Radical ring-opening copolymerization of cyclic ketene acetals and maleimides affords homogeneous incorporation of degradable units. ACS Macro Lett. 2017;6:1071–7.

    Article  CAS  Google Scholar 

  16. Ouchi M, Nakano M, Nakanishi T, Sawamoto M. Alternating sequence control for carboxylic acid and hydroxy pendant groups by controlled radical cyclopolymerization of a divinyl monomer carrying a cleavable spacer. Angew Chem Int Ed. 2016;55:14584–9.

    Article  CAS  Google Scholar 

  17. Cazares-Cortes E, Baker BC, Nishimori K, Ouchi M, Tournilhac F. Polymethacrylic acid shows thermoresponsivity in an organic solvent. Macromolecules. 2019;52:5995–6004.

    Article  CAS  Google Scholar 

  18. Kametani Y, Sawamoto M, Ouchi M. Control of the alternating sequence for n-isopropylacrylamide (NIPAM) and methacrylic acid units in a copolymer by cyclopolymerization and transformation of the cyclopendant group. Angew Chem Int Ed. 2018;57:10905–9.

    Article  CAS  Google Scholar 

  19. Nishimori K, Cazares-Cortes E, Guigner JM, Tournilhac F, Ouchi M. Physical gelation of AB-alternating copolymers made of vinyl phenol and maleimide units: cooperation between precisely incorporated phenol and long alkyl pendant groups. Polym Chem. 2019;10:2327–36.

    Article  CAS  Google Scholar 

  20. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

    Article  CAS  Google Scholar 

  21. Nishimori K, Sawamoto M, Ouchi M. Design of maleimide monomer for higher level of alternating sequence in radical copolymerization with styrene. J Polym Sci Part A Polym Chem. 2019;57:367–75.

    Article  CAS  Google Scholar 

  22. Leonard NM, Brunckova J. In situ formation of N-trifluoroacetoxy succinimide (TFA-NHS): one-pot formation of succinimidyl esters, N-trifluoroacetyl amino acid succinimidyl esters, and N-maleoyl amino acid succinimidyl esters. J Org Chem. 2011;76:9169–74.

    Article  CAS  Google Scholar 

  23. Li BN, Liang JF. A linker approach to phospholipopeptides. Eur J Lipid Sci Tech. 2016;118:273–8.

    Article  CAS  Google Scholar 

  24. Das A, Theato P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecules. Chem Rev. 2016;116:1434–95.

    Article  CAS  Google Scholar 

  25. Nishimori K, Ouchi M, Sawamoto M. Sequence analysis for alternating copolymers by MALDI-TOF-MS: importance of initiator selectivity for comonomer pair. Macromol Rapid Commun. 2016;37:1414–20.

    Article  CAS  Google Scholar 

  26. Mishima E, Yamago S. Controlled alternating copolymerization of (Meth)acrylates and Vinyl ethers by using organoheteroatom-mediated living radical polymerization. Macromol Rapid Commun. 2011;32:893–8.

    Article  CAS  Google Scholar 

  27. Mishima E, Tamura T, Yamago S. Controlled copolymerization of acrylate and 6-methyleneundecane by organotellurium-mediated living radical polymerization (TERP). Macromolecules. 2012;45:2989–94.

    Article  CAS  Google Scholar 

  28. Srichan S, Chan-Seng D, Lutz JF. Influence of strong electron-donor monomers in sequence-controlled polymerizations. ACS Macro Lett. 2012;1:589–92.

    Article  CAS  Google Scholar 

  29. ten Brummelhuis N, Weck M. Orthogonal multifunctionalization of random and alternating copolymers. ACS Macro Lett. 2012;1:1216–8.

    Article  Google Scholar 

  30. Nakamura K, Hatakeyama T, Hatakeyama H. Effect of substituent groups on hydrogen-bonding of polyhydroxystyrene derivatives. Polym J. 1983;15:361–6.

    Article  CAS  Google Scholar 

  31. Kuo SW, Tung PH, Chang FC. Syntheses and the study of strongly hydrogen- bonded poly(vinylphenol-b-vinylpyridine) diblock copolymer through anionic polymerization. Macromolecules. 2006;39:9388–95.

    Article  CAS  Google Scholar 

  32. Degawa K, Matsumoto A. Retardation effect of catechol moiety during radical copolymerization of 3,4-dihydroxystyrene with various monomers. Chem Lett. 2019;48:928–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grants 17J06075 (KN), 17H06453 (MO) and 19H00911 (MO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ouchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimori, K., Ouchi, M. Design of a maleimide monomer to achieve precise sequence control and functionalization for an alternating copolymer with vinylphenol. Polym J 52, 717–729 (2020). https://doi.org/10.1038/s41428-020-0326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0326-9

Search

Quick links