Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The expanding landscape of inflammatory cells affecting cancer therapy

A Publisher Correction to this article was published on 06 April 2020

This article has been updated

Abstract

Tumour-infiltrating myeloid cells (TIMCs) are critical regulators of cancer growth. The different phenotypes, functions and therapeutic effects of these phagocytes have, however, been difficult to study. With the advent of single-cell-based technologies, a new ‘worldview’ is emerging: the classification of TIMCs into subtypes that are conserved across patients and across species. As the landscape of TIMCs is beginning to be understood, it opens up questions about the function of each TIMC subtype and its drugability. In this Perspective, we outline the current map of TIMC populations in cancer and their known and presumed functions, and discuss their therapeutic implications and the biological research questions that they give rise to. The answers should be particularly relevant for bioengineers, materials scientists and the chemical and pharmaceutical communities developing the next generation of cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour-infiltrating myeloid cell types.
Fig. 2: Five therapeutic opportunities relevant to TIMC populations.

Similar content being viewed by others

Change history

References

  1. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    CAS  PubMed  Google Scholar 

  2. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    CAS  PubMed  Google Scholar 

  4. Lavin, Y. et al. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169, 750–765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung, W. et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8, 15081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Müller, S. et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 18, 234 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Ginhoux, F., Schultze, J. L., Murray, P. J., Ochando, J. & Biswas, S. K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17, 34–40 (2016).

    CAS  PubMed  Google Scholar 

  14. Gordon, S. & Plüddemann, A. The mononuclear phagocytic system. Generation of diversity. Front. Immunol. 10, 1893 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsoucas, D. et al. Accurate estimation of cell-type composition from gene expression data. Nat. Commun. 10, 2975 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Etzerodt, A. et al. Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J. Exp. Med. 216, 2394–2411 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Barry, K. C. et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Binnewies, M. et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177, 556–571 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, Y., Li, Y. Y., Matsushima, K., Baba, T. & Mukaida, N. CCL3-CCR5 axis regulates intratumoral accumulation of leukocytes and fibroblasts and promotes angiogenesis in murine lung metastasis process. J. Immunol. 181, 6384–6393 (2008).

    CAS  PubMed  Google Scholar 

  29. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    CAS  PubMed  Google Scholar 

  31. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fleming, V. et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol. 9, 398 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    CAS  PubMed  Google Scholar 

  34. Ovais, M., Guo, M. & Chen, C. Tailoring nanomaterials for targeting tumor-associated macrophages. Adv. Mater. 31, e1808303 (2019).

    PubMed  Google Scholar 

  35. Miller, M. A. & Weissleder, R. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer 17, 399–414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller, M. A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv. Drug Deliv. Rev. 113, 61–86 (2017).

    CAS  PubMed  Google Scholar 

  37. Ng, T. S. C., Garlin, M. A., Weissleder, R. & Miller, M. A. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 10, 968–997 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodell, C. B., Koch, P. D. & Weissleder, R. Screening for new macrophage therapeutics. Theranostics 9, 7714–7729 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Haney, M. S. et al. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat. Genet 50, 1716–1727 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S. J. et al. Efficient blockade of locally reciprocated tumor-macrophage signaling using a TAM-avid nanotherapy. Sci. Adv. (in the press).

  41. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad. Sci. USA 109, 6662–6667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    CAS  PubMed  Google Scholar 

  43. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Advani, R. et al. CD47 Blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Logtenberg, M. E. W. et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat. Med. 25, 612–619 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Linde, N. et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    CAS  PubMed  Google Scholar 

  53. Spiegel, A. et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 6, 630–649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cortez-Retamozo, V. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38, 296–308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Murphy, J. E. et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1020–1027 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Downey, C. M., Aghaei, M., Schwendener, R. A. & Jirik, F. R. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2’3’-cGAMP, induces M2 macrophage repolarization. PLoS ONE 9, e99988 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Kather, J. N. & Halama, N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br. J. Cancer 120, 871–882 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  60. King, K. R. et al. IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nat. Med. 23, 1481–1487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS  PubMed  Google Scholar 

  64. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Momin, N. et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl. Med. 11, eaaw2614 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Jahan, N., Talat, H. & Curry, W. T. Agonist OX40 immunotherapy improves survival in glioma-bearing mice and is complementary with vaccination with irradiated GM-CSF-expressing tumor cells. Neuro Oncol. 20, 44–54 (2018).

    CAS  PubMed  Google Scholar 

  67. Ma, H. S. et al. A CD40 agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell-mediated anticancer activity. Cancer Immunol. Res. 7, 428–442 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sun, S. C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545–558 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vonderheide, R. H. The immune revolution: a case for priming, not checkpoint. Cancer Cell 33, 563–569 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dougan, S. K. & Dougan, M. Regulation of innate and adaptive antitumor immunity by IAP antagonists. Immunotherapy 10, 787–796 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Koch, P. D., Rodell, C. B., Kohler, R. H., Pittet, M. & Weissleder, R. Myeloid cell-targeted nanocarriers efficiently inhibit cellular inhibitor of apoptosis for cancer immunotherapy. Cell Chem. Biol. 16, 95–104 (2020).

    Google Scholar 

  72. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nathan, C. F., Silverstein, S. C., Brukner, L. H. & Cohn, Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med. 149, 100–113 (1979).

    CAS  PubMed  Google Scholar 

  75. Urban, J. L., Shepard, H. M., Rothstein, J. L., Sugarman, B. J. & Schreiber, H. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc. Natl Acad. Sci. USA 83, 5233–5237 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Matlung, H. L. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 23, 3946–3959e6 (2018).

    CAS  PubMed  Google Scholar 

  78. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ponzetta, A. et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 178, 346–360 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Magnuson, A. M. et al. Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proc Natl Acad. Sci. USA 115, E10672–E10681 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed  Google Scholar 

  82. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Finotello, F., Rieder, D., Hackl, H. & Trajanoski, Z. Next-generation computational tools for interrogating cancer immunity. Nat. Rev. Genet. 20, 724–746 (2019).

    CAS  PubMed  Google Scholar 

  84. Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and neutrophils. Proc. Natl Acad. Sci. USA 109, 2491–2496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).

    CAS  PubMed  Google Scholar 

  87. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  88. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Loyher, P. L. et al. Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med. 215, 2536–2553 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Laviron, M. & Boissonnas, A. Ontogeny of tumor-associated macrophages. Front. Immunol. 10, 1799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sharma, M. D. et al. Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c+CD103+ monocytic antigen-presenting cells in tumors. Immunity 48, 91–106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Marigo, I. et al. T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30, 377–390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. Giedt, R. J. et al. Single-cell barcode analysis provides a rapid readout of cellular signaling pathways in clinical specimens. Nat. Commun. 9, 4550 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Kim, H. Y. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64Cu-labeled macrin. ACS Nano 12, 12015–12029 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS  PubMed  Google Scholar 

  97. Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. Single-cell transcriptomics to explore the immune system in health and disease. Science 358, 58–63 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Heath, J. R., Ribas, A. & Mischel, P. S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15, 204–216 (2016).

    CAS  PubMed  Google Scholar 

  99. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mantovani, A. & Allavena, P. The interaction of anticancer therapies with tumor-associated macrophages. J. Exp. Med. 212, 435–445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    CAS  PubMed  Google Scholar 

  103. Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    CAS  PubMed  Google Scholar 

  107. Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Weinreb, C., Wolock, S. & Klein, A. M. SPRING: a kinetic interface for visualizing high dimensional single-cell expression data. Bioinformatics 34, 1246–1248 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Miller for helpful discussions. R.W. is supported by National Institutes of Health grant numbers UH3 CA202637, R01 CA204019, P01 CA069246, U01 CA206890, R01 CA206997 and R21 CA236561. M.J.P. is supported by National Institutes of Health grant numbers R01 AI084880, R01 CA206890, R01 CA218579, P01 CA240239 and U01 CA224348, and by the Samana Cay MGH Research Scholar Fund.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing of this manuscript.

Corresponding authors

Correspondence to Ralph Weissleder or Mikael J. Pittet.

Ethics declarations

Competing interests

R.W. has received consultancy payments from ModeRNA, Tarveda Pharmaceuticals, Alivio Therapeutics and Accure Health, and is a shareholder of T2Biosystems, Lumicell and Accure Health. M.J.P. has received consultancy payments from Aileron Therapeutics, AstraZeneca, Elstar Therapeutics, KSQ Therapeutics, MPM Capital, Siamab Therapeutics, Third Rock Ventures and Tidal Therapeutics. All patents associated with R.W. and M.J.P. have been assigned to, and handled by, the Massachusetts General Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissleder, R., Pittet, M.J. The expanding landscape of inflammatory cells affecting cancer therapy. Nat Biomed Eng 4, 489–498 (2020). https://doi.org/10.1038/s41551-020-0524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-0524-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer