Skip to main content

Advertisement

Log in

The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation.

Abstract

Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Guo 2004

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

N:

Nitrogen

C:

Carbon

NO3 :

Nitrate

NH4+ :

Ammonium

CTK:

Cytokinin

NO:

Nitric oxide

NR:

Nitrate reductase

ABA:

Abscisic acid

SLs:

Strigolactones

BRs:

Brassinosteroids

IAA:

Indole-3-acetic acid

NAA:

1-Naphthaleneacetic acid

NPA:

N-1-Naphthylphthalamic acid

6-BA:

6-Benzylaminopurine

SHY2:

Short hypocotyl 2

ACS:

1-Aminocyclopropane-1-carboxylic acid synthase

BG1:

β-Glucosidase

SCR:

SCARECROW

ABI4:

ABA INSENSITIVE 4

ABI5:

ABA INSENSITIVE 5

NOS:

Nitric oxide synthase

XOS:

Xanthine oxidase

SNP:

Sodium nitroprusside

TZ:

Transition zone

DMSO:

Dimethyl sulfoxide

GWAS:

Genome-wide association study

References

  • Alarcón MV, Lloret-Salamanca A, Lloret PG et al (2009) Effects of antagonists and inhibitors of ethylene biosynthesis on maize root elongation. Plant Signal Behav 4(12):1154–1156

    PubMed  PubMed Central  Google Scholar 

  • Aloni B, Pashkar T, Karni L et al (1991) Nitrogen supply influences carbohydrate partitioning of pepper seedlings and transplant development. J Am Soc Hortic Sci 116(6):995–999

    CAS  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69(14):3401–3411

    CAS  PubMed  Google Scholar 

  • Atkinson JA, Rasmussen A, Traini R et al (2014) Branching out in roots: uncovering form, function, and regulation. Plant Physiol 166(2):538–550

    PubMed  PubMed Central  Google Scholar 

  • Bagchi R, Salehin M, Adeyemo OS et al (2012) Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. Plant Physiol 160(2):906–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Yao T, Li M et al (2014) PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. Mol Plant 7(4):616–625

    CAS  PubMed  Google Scholar 

  • Bao F, Shen J, Brady SR et al (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134(4):1624–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baskin TI (2013) Patterns of root growth acclimation: constant processes, changing boundaries. Wires Dev Biol 2(1):65–73

    CAS  Google Scholar 

  • Bellini C, Pacurar DI, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    CAS  PubMed  Google Scholar 

  • Bertell G, Bolander E, Eliasson L (1990) Factors increasing ethylene production enhance the sensitivity of root growth to auxins. Physiol Plantarum 79(2):255–258

    CAS  Google Scholar 

  • Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol 25:10–16

    CAS  PubMed  Google Scholar 

  • Bosemark NO (2006) The influence of nitrogen on root development. Physiol Plant 7(3):497–502

    Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584

    CAS  Google Scholar 

  • Caba JM, Centeno ML, Fernández B et al (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta 211(1):98–104

    CAS  PubMed  Google Scholar 

  • Caba JM, Recalde L, Ligero F (1998) Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ 21(1):87–93

    CAS  Google Scholar 

  • Cai J, Chen L, Qu H et al (2012) Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol Plant 34(3):939–946

    CAS  Google Scholar 

  • Chae HS (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15(2):545–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25(8):1031–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JW, Werr W (2015) Cytokinin–auxin crosstalk in cell type specification. Trends Plant Sci 20(5):291–300

    CAS  PubMed  Google Scholar 

  • Chen X, Cui Z, Fan M et al (2014a) Producing more grain with lower environmental costs. Nature 514(7523):486–489

    CAS  PubMed  Google Scholar 

  • Chen Y, Xiao C, Chen X et al (2014b) Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crop Res 159:1–9

    Google Scholar 

  • Chun L, Mi G, Li J et al (2005) Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil 276(1–2):369–382

    CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111(3):671–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collier MD, Fotelli MN, Nahm M et al (2003) Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level: interactions between cytokinins and soluble N compounds. Plant Cell Environ 26(9):1549–1560

    CAS  Google Scholar 

  • Conn CE, Bythell-Douglas R, Neumann D et al (2015) Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349(6247):540–543

    CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Turner B et al (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154(3753):1189–1190

    CAS  PubMed  Google Scholar 

  • Cox WJ, Reisenauer HM (1973) Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil 38(2):363–380

    CAS  Google Scholar 

  • Cramer MD, Lewis OAM (1993) The influence of nitrate and ammonium nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants. Ann Bot-Lond 72(4):359–365

    CAS  Google Scholar 

  • Cui H, Hao Y, Kong D (2012) Scarecrow has a short-root-independent role in modulating the sugar response1. Plant Physiol 158(4):1769–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drew MC, He CJ, Morgan PW (1989) Decreased ethylene biosynthesis, and induction of aerenchyma, by nitrogen- or phosphate-starvation in adventitious roots of Zea mays L. Plant Physiol 91(1):266–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23(4):311–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Zhang W, Zhang N et al (2018) Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor Appl Genet 131(12):2677–2698

    CAS  PubMed  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I et al (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58(1):9–17

    CAS  Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis DR et al (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108(45):18506–18511

    PubMed  PubMed Central  Google Scholar 

  • Forde BG (2014) Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol 21:30–36

    CAS  PubMed  Google Scholar 

  • Friedrichsen DM, Joazeiro CA, Li J et al (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123(4):1247–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Lei D, Li Y et al (2017) Nitrate increases ethylene production and aerenchyma formation in roots of lowland rice plants under water stress. Funct Plant Biol 44(4):430–442

    CAS  PubMed  Google Scholar 

  • Gao K, Chen F, Yuan L et al (2015) A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant Cell Environ 38(4):740–750

    CAS  PubMed  Google Scholar 

  • Gao K, Chen FJ, Yuan LX et al (2014) Cell production and expansion in the primary root of maize in response to low-nitrogen stress. J Integr Agr 13(11):2508–2517

    CAS  Google Scholar 

  • García MJ, Romera FJ, Lucena C et al (2015) Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol 169(1):51–60

    PubMed  PubMed Central  Google Scholar 

  • Gaudin AC, McClymont SA, Holmes BM et al (2011) Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ 34(12):2122–2137

    CAS  PubMed  Google Scholar 

  • Giehl RF, von Wirén N (2014) Root nutrient foraging. Plant Physiol 166(2):509–517

    PubMed  PubMed Central  Google Scholar 

  • Goda H, Sawa S, Asami T et al (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134(4):1555–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-García MP, Vilarrasa-Blasi J, Zhiponova M et al (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849–859

    PubMed  Google Scholar 

  • Greef JM, Geisler G (1991) Growth of excised maize roots (Zea mays L.) at increasing N-levels//Developments in Agricultural and Managed Forest Ecology. Elsevier 24:66–72

    Google Scholar 

  • Gruber BD, Giehl RF, Friedel S et al (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163(1):161–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Li Z, Mao Y et al (2018) Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci 274:320–331

    CAS  PubMed  Google Scholar 

  • Guo S, Zhou Y, Shen Q et al (2007) Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol 9(01):21–29

    CAS  PubMed  Google Scholar 

  • Guo YF (2004) Genotypic difference in maize roots in response to localized nitrate supply and the possible physiological mechanisms. PhD thesis, China Agricultural University

  • Hahn A, Zimmermann R, Wanke D et al (2008) The root cap determines ethylene-dependent growth and development in maize roots. Mol Plant 1(2):359–367

    CAS  PubMed  Google Scholar 

  • Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD/NIP transporter. Plant Signal Behav 5(11):1365–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havlin JL, Tisdale SL, Nelson WL et al (2016) Soil fertility and fertilizers. Pearson Education, India

    Google Scholar 

  • He CJ, Morgan PW, Drew MC (1992) Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L. during Aerenchyma Formation. Plant Physiol 98(1):137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano T, Satoh Y, Ohki A et al (2008) Inhibition of ammonium assimilation restores elongation of seminal rice roots repressed by high levels of exogenous ammonium. Physiol Plantarum 134(1):183–190

    CAS  Google Scholar 

  • Hirel B, Tétu T, Lea PJ et al (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3(9):1452–1485

    CAS  Google Scholar 

  • Hochholdinger F, Yu P, Marcon C (2018) Genetic control of root system development in maize. Trends Plant Sci 23(1):79–88

    CAS  PubMed  Google Scholar 

  • Hou X, Rivers J, León P et al (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21(9):792–803

    CAS  PubMed  Google Scholar 

  • Hu Y, Vandenbussche F, Van Der Straeten D (2017) Regulation of seedling growth by ethylene and the ethylene–auxin crosstalk. Planta 245(3):467–489

    CAS  PubMed  Google Scholar 

  • Ioio RD, Linhares FS, Sabatini S (2008) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11(1):23–27

    Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    CAS  PubMed  Google Scholar 

  • Irving LJ (2015) Carbon assimilation, biomass partitioning and productivity in grasses. Agriculture 5(4):1116–1134

    CAS  Google Scholar 

  • Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109(3):725–727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov VB, Filin AN (2018) Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation. Funct Plant Biol 45(2):215–221

    CAS  PubMed  Google Scholar 

  • Jia Z, Giehl RF, Meyer RC et al (2019) Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nat Commun 10(1):2378

    PubMed  PubMed Central  Google Scholar 

  • Jia Z, von Wirén N (2020) Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. J Exp Bot eraa033

  • Jiao X, Lyu Y, Wu X et al (2016) Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. J Exp Bot 67(17):4935–4949

    CAS  PubMed  Google Scholar 

  • Ju XT, Xing GX, Chen XP et al (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106(9):3041–3046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57(4):707–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Kudo T, Kojima M et al (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62(4):1399–1409

    CAS  PubMed  Google Scholar 

  • Kim SY, Mulkey TJ (1997) Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation in maize (Zea mays L.). J Plant Biol 40(4):256–260

    CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ et al (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409

    CAS  Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JT et al (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    PubMed  PubMed Central  Google Scholar 

  • Köllmer I, Novák O, Strnad M et al (2014) Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX 7) from Arabidopsis causes specific changes in root growth and xylem differentiation. Plant J 78(3):359–371

    PubMed  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344

    CAS  PubMed  Google Scholar 

  • Kuderová A, Urbánková I, Válková M et al (2008) Effects of conditional IPT-dependent cytokinin overproduction on root architecture of Arabidopsis seedlings. Plant Cell Physiol 49(4):570–582

    PubMed  Google Scholar 

  • Kuiper D (1988) Growth responses of Plantago major L. ssp. pleiosperma (Pilger) to changes in mineral supply: evidence for regulation by cytokinins. Plant Physiol 87(3):555–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laperche A, Devienne-Barret F, Maury O et al (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113(6):1131–1146

    CAS  PubMed  Google Scholar 

  • Lee HY, Yoon GM (2018) Regulation of ethylene biosynthesis by phytohormones in etiolated rice (Oryza sativa L.) seedlings. Mol Cells 41(4):311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legg JO, Meisinder J (1982) Soil nitrogen budgets. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy Inc, Madison, pp 503–507

    Google Scholar 

  • Li B, Li G, Kronzucker HJ et al (2014) Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends Plant Sci 19(2):107–114

    CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938

    CAS  PubMed  Google Scholar 

  • Li P, Chen F, Cai H et al (2015) A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J Exp Bot 66(11):3175–3188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li SX, Wang ZH, Stewart BA (2013) Responses of crop plants to ammonium and nitrate N//Advances in agronomy. Academic Press 118:205–397

    Google Scholar 

  • Li Z, Zhang X, Zhao Y et al (2017) Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J 16(1):86–99

    PubMed  PubMed Central  Google Scholar 

  • Liang Y, Harris JM (2005) Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. Am J Bot 92(10):1675–1683

    CAS  PubMed  Google Scholar 

  • Liang Y, Mitchell D, Harris J (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol 304(1):297–307

    CAS  PubMed  Google Scholar 

  • Ligero F, Lluch C, Olivares J (1986) Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti. J Plant Physiol 125(3):361–365

    CAS  Google Scholar 

  • Ligero F, Lluch C, Olivares J (1987) Evolution of ethylene from roots and nodulation rate of Alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J Plant Physiol 129(5):461–467

    CAS  Google Scholar 

  • Liu J, An X, Cheng L et al (2010) Auxin transport in maize roots in response to localized nitrate supply. Ann Bot-London 106(6):1019–1026

    CAS  Google Scholar 

  • Liu J, Li J, Chen F et al (2008) Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil 305(1–2):253–265

    CAS  Google Scholar 

  • Liu M, Liu XX, He XL et al (2017) Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis. New Phytol 213(3):1242–1256

    PubMed  Google Scholar 

  • Liu Y, von Wirén N (2017) Ammonium as a signal for physiological and morphological responses in plants. J Exp Bot 68(10):2581–2592

    CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55(5):493–512

    Google Scholar 

  • Lynch JP (2019) Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol 223(2):548–564

    PubMed  Google Scholar 

  • Ma B, Yin CC, He SJ et al (2014) Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings. PLoS Genet 10(10):1

    Google Scholar 

  • Manoli A, Begheldo M, Genre A et al (2014) NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot 65(1):185–200

    CAS  PubMed  Google Scholar 

  • Manoli A, Trevisan S, Voigt B et al (2016) Nitric oxide-mediated maize root apex responses to nitrate are regulated by auxin and strigolactones. Front Plant Sci 6:1269

    PubMed  PubMed Central  Google Scholar 

  • Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae 3(4):52

    Google Scholar 

  • Marschner P (2012) Marschner's mineral nutrition of higher plants. Academic press, London

    Google Scholar 

  • Marzec M, Muszynska A, Gruszka D (2013) The role of strigolactones in nutrient-stress responses in plants. Int J Mol Sci 14(5):9286–9304

    PubMed  PubMed Central  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H et al (1982) Nitrogen//Principles of plant nutrition. Springer, Dordrecht, pp 397–434

    Google Scholar 

  • Mi GH, Chen FJ, Wu QP et al (2010) Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Sci China Life Sci 53(12):1369–1373

    PubMed  Google Scholar 

  • Mi GH, Chen FJ, Zhang FS (2008) Multiple signaling pathways controls nitrogen-mediated root elongation in maize. Plant Signal Behav 3(11):1030–1032

    PubMed  PubMed Central  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    CAS  PubMed  Google Scholar 

  • Mikkelsen R, Hartz TK (2008) Nitrogen sources for organic crop production. Better Crops 92(4):16–19

    Google Scholar 

  • Morère-Le Paven MC, Viau L, Hamon A et al (2012) Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot 62(15):5595–5605

    Google Scholar 

  • Müssig C, Shin GH, Altmann T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133(3):1261–1271

    PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. Plos Biol 2(9):e258

    PubMed  PubMed Central  Google Scholar 

  • Ondzighi-Assoume CA, Chakraborty S, Harris JM (2016) Environmental nitrate stimulates abscisic acid accumulation in Arabidopsis root tips by releasing it from inactive stores. Plant Cell 28(3):729–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66(4):1113–1121

    CAS  PubMed  Google Scholar 

  • Pellizzaro A, Clochard T, Cukier C et al (2014) The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. Plant Physiol 166(4):2152–2165

    PubMed  PubMed Central  Google Scholar 

  • Phung NT, Mai CD, Hoang GT et al (2016) Genome-wide association mapping for root traits in a panel of rice accessions from Vietnam. BMC Plant Biol 16(1):64

    PubMed  PubMed Central  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99(4):1271–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Qian Y, Xu Y et al (2017) Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front Plant Sci 8:2096

    PubMed  PubMed Central  Google Scholar 

  • Ren Y, Yue H, Li L et al (2018) Identification and characterization of circRNAs involved in the regulation of low nitrogen-promoted root growth in hexaploid wheat. Biol Res 51(1):43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64(5):1193–1208

    CAS  PubMed  Google Scholar 

  • Roddick JG, Rijnenberg AL, Ikekawa N (1993) Developmental effects of 24-epibrassinolide in excised roots of tomato grown in vitro. Physiol Plantarum 87(4):453–458

    CAS  Google Scholar 

  • Rufty TW, Huber SC, Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88(3):725–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155(2):721–734

    CAS  PubMed  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S et al (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuelson ME, Larsson CM (1993) Nitrate regulation of zeation riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci 93(1–2):77–84

    CAS  Google Scholar 

  • Sanchez DL, Liu S, Ibrahim R et al (2018) Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Sci 268:30–38

    CAS  PubMed  Google Scholar 

  • Sanz L, Albertos P, Mateos I et al (2015) Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot 66(10):2857–2868

    CAS  PubMed  Google Scholar 

  • Sanz L, Fernándezmarcos M, Modrego A et al (2014) Nitric oxide plays a role in stem cell niche homeostasis through its interaction with Auxin. Plant Physiol 166(4):1972–1984

    PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27(1):44–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21:7–15

    CAS  PubMed  Google Scholar 

  • Scheible WR, Lauerer M, Schulze ED et al (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11(4):671–691

    CAS  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: Changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25(2):211–222

    CAS  PubMed  Google Scholar 

  • Sharp RE, Hsiao TC, Silk WK (1990) Growth of the maize primary root at low water potentials: II. role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiol 93(4):1337–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Fan X, Klaus D et al (2005) Effect of localized nitrogen supply on root morphology in rice and its mechanism. Chin J Rice Sci 19(2):147–152

    CAS  Google Scholar 

  • Singh S, Letham DS, Zhang X et al (1992) Cytokinin biochemistry in relation to leaf senescence. VI. Effect of nitrogenous nutrients on cytokinin levels and senescence of tobacco leaves. Phys Plant 84(2):262–268

    CAS  Google Scholar 

  • Smith KA, Robertson PD (1971) Effect of ethylene on root extension of cereals. Nature 234(5325):148–149

    CAS  PubMed  Google Scholar 

  • Sozzani R, Iyer-Pascuzzi A (2014) Postembryonic control of root meristem growth and development. Curr Opin Plant Biol 17:7–12

    PubMed  Google Scholar 

  • Staal M, De CT, Simon D et al (2011) Apoplastic alkalinization is instrumental for the inhibition of cell elongation in the Arabidopsis root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Plant Physiol 155(4):2049–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170(2):603–617

    CAS  PubMed  Google Scholar 

  • Stenlid G (1982) Cytokinins as inhibitors of root growth [ACC, 1-aminocyclopropane-1-carboxylic acid, antiauxin, auxin, auxin antagonist, ethylene, root elongation, Triticum aestivum, Linum usitatissimum, Cucumis sativus]. Physiol Plantarum 56(4):500–506

    CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV et al (2007) Multilevel Interactions between ethylene and auxin in arabidopsis roots. Plant Cell 19(7):2169–2185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson FJ (1982) Organic forms of soil nitrogen. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy Inc, Madison, pp 67–122

    Google Scholar 

  • Stitt M (1999) Feil R (1999) Lateral root frequency decreases when nitrate accumulates in tobacco transformants with low nitrate reductase activity: consequences for the regulation of biomass partitioning between shoots and root1. Plant Soil 215(2):143–153

    CAS  Google Scholar 

  • Strader LC, Beisner ER, Bartel B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 21(11):3585–3590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Bi Y, Tao J et al (2016) Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Environ 39(7):1473–1484

    CAS  PubMed  Google Scholar 

  • Sun H, Feng F, Liu J et al (2018a) Nitric oxide affects rice root growth by regulating auxin transport under nitrate supply. Front Plant Sci 9:659

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Jiao L, Song W et al (2015) Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J Exp Bot 66(9):2449–2459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Bi Y et al (2018b) OsPIN1b is involved in rice seminal root elongation by regulating root apical meristem activity in response to low nitrogen and phosphate. Sci Rep 8(1):13014

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Liu S et al (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65(22):6735–6746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup R, Perry P, Hagenbeek D et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19(7):2186–2196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 65(10):2633–2643

    CAS  PubMed  Google Scholar 

  • Takei K, Sakakibara H, Taniguchi M et al (2001) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42(1):85–93

    CAS  PubMed  Google Scholar 

  • Tian Q, Chen F, Liu J et al (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165(9):942–951

    CAS  PubMed  Google Scholar 

  • Tian Q, Chen F, Zhang F et al (2005) Possible involvement of cytokinin in nitrate-mediated root growth in maize. Plant Soil 277(1–2):185–196

    CAS  Google Scholar 

  • Tian QY, Sun P, Zhang WH (2009) Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol 184(4):918–931

    CAS  PubMed  Google Scholar 

  • van Bueren ETL, Struik PC (2017) Diverse concepts of breeding for nitrogen use efficiency: a review. Agron Sustain Dev 37(5):50

    Google Scholar 

  • Van der Werf A, Nagel OW (1996) Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant Soil 185(1):21–32

    Google Scholar 

  • Vandenbussche F, Van Der Straeten D (2018) The role of ethylene in plant growth and development. Annu Plant Rev online 219–241

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86

    PubMed  PubMed Central  Google Scholar 

  • Vragović K, Sela A, Friedlander-Shani L et al (2015) Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc Natl Acad Sci USA 112(3):923–928

    PubMed  PubMed Central  Google Scholar 

  • Wagner BM, Beck E (1993) Cytokinins in the perennial herb Urtica dioica L. as influenced by its nitrogen status. Planta 190(4):511–518

  • Walch-Liu P, Neumann G, Bangerth F et al (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51(343):227–237

    CAS  PubMed  Google Scholar 

  • Waldie T, McCulloch H, Leyser O (2014) Strigolactones and the control of plant development: lessons from shoot branching. Plant J 79(4):607–622

    CAS  PubMed  Google Scholar 

  • Wang L, Ruan YL (2016) Shoot–root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation. Funct Plant Biol 43(2):105–113

    CAS  PubMed  Google Scholar 

  • Wang P, Wang Z, Pan Q et al (2019) Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. J Exp Bot 70(6):1859–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang Z, Sun X et al (2018) Interaction effect of nitrogen form and planting density on plant growth and nutrient uptake in maize seedlings. J Integr Agr 17:60345–60347

    Google Scholar 

  • Wang Y, Mi G, Chen F et al (2005) Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. J Plant Nutr 27(12):2189–2202

    Google Scholar 

  • Waters MT, Gutjahr C, Bennett T et al (2017) Strigolactone signaling and evolution. Annu Rev Plant Biol 68(1):291–322

    CAS  PubMed  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9(1):86–100

    CAS  PubMed  Google Scholar 

  • Wen D, Gong B, Sun S et al (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718

    PubMed  PubMed Central  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I et al (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22(12):3905–3920

    PubMed  PubMed Central  Google Scholar 

  • Wolt JD (1994) Soil solution chemistry: applications to environmental science and agriculture. Wiley, Hoboken

    Google Scholar 

  • Xu Y, Burgess P, Zhang X et al (2016) Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J Exp Bot 67(6):1979–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ren Y, Li J et al (2019) Comparative proteomic analysis provides new insights into low nitrogen-promoted primary root growth in hexaploid wheat. Front Plant Sci 10:151

    PubMed  PubMed Central  Google Scholar 

  • Yendrek CR, Lee YC, Morris V et al (2010) A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in Medicago truncatula. Plant J 62(1):100–112

    CAS  PubMed  Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S et al (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109(2):181–191

    CAS  PubMed  Google Scholar 

  • Yoneyama K, Kisugi T, Xie X et al (2015) Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta 241(3):687–698

    CAS  PubMed  Google Scholar 

  • Yoneyama K, Xie X, Kisugi T et al (2013) Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum. Planta 238(5):885–894

    CAS  PubMed  Google Scholar 

  • Yu P, Gutjahr C, Li C et al (2016) Genetic control of lateral root formation in cereals. Trends Plant Sci 21(11):951–961

    CAS  PubMed  Google Scholar 

  • Yu P, Li X, White PJ et al (2015) A large and deep root system underlies high nitrogen-use efficiency in maize production. PLoS ONE 10(5):e0126293

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Bousquet A, Harris JM (2014) Abscisic acid and lateral root organ defective/numerous infections and polyphenolics modulate root elongation via reactive oxygen species in Medicago truncatula. Plant Physiol 166(2):644–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51(34):51–59

    CAS  PubMed  Google Scholar 

  • Zhao DY, Tian QY, Li LH et al (2007) Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann Bot Lond 100(3):497–503

    CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31672221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Mi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Chen, F., Yuan, L. et al. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta 251, 84 (2020). https://doi.org/10.1007/s00425-020-03376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03376-4

Keywords

Navigation