Skip to main content
Log in

Pitting Corrosion Behavior of CUSTOM 450 Stainless Steel Using Electrochemical Characterization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the electrochemical polarization tests were performed on tensioned and non-tensioned CUSTOM 450 specimens in a 3.5 wt% NaCl solution to investigate pitting potential and stable pit initiation time. A potentiodynamic test was conducted to determine the exact amount of pitting potentials. According to the potentiostatic tests, a relation between applied potential and the stable pit initiation time was obtained. Concerning this relation, stable pitting time can be predicted without experimental works. Optical microscopy was used to evaluate the shape of the pits. Tensile stress led the pit to experience the “pit to crack” step. The corrosion rate of samples was studied by the determination of mass loss. Mass loss measurements and current density–time curve in potentiostatic tests demonstrated the rate of pitting corrosion decreased as time passed. Finally, the depth of the pits was measured by the eddy current technique. The results showed that tensile stress facilitated deeper pit development.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Tian, X. Liu, S. Chen, Fracture analysis on compressor blades. Int. J. Fatigue 13(4), 333–336 (1991)

    Article  CAS  Google Scholar 

  2. N.S. Xi, P.D. Zhong, H.Q. Huang, H. Yan, C.H. Tao, Failure investigation of blade and disk in first stage compressor. Eng. Fail. Anal. 7(6), 385–392 (2000)

    Article  CAS  Google Scholar 

  3. E. Poursaeidi, A.M. Niaei, M. Arablu, A. Salarvand, Experimental investigation on erosion performance and wear factors of custom 450 steel as the first row blade material of an axial compressor. Int. J. Surf. Sci. Eng. 11(2), 85–99 (2017)

    Article  CAS  Google Scholar 

  4. E. Poursaeidi, A. Babaei, M.M. Arhani, M. Arablu, Effects of natural frequencies on the failure of R1 compressor blades. Eng. Fail. Anal. 25, 304–315 (2012)

    Article  Google Scholar 

  5. R. Derakhshandeh-Haghighi, Metallurgical analysis and simulation of a service-fractured compressor blade made of ASTM S45000 alloy. J. Fail. Anal. Prev. 17(3), 522–528 (2017)

    Article  Google Scholar 

  6. O. Pedram, E. Poursaeidi, Total life estimation of a compressor blade with corrosion pitting, SCC and fatigue cracking. J. Fail. Anal. Prev. 18(2), 423–434 (2018)

    Article  Google Scholar 

  7. E. Poursaeidi, H. Bakhtiari, Fatigue crack growth simulation in a first stage of compressor blade. Eng. Fail. Anal. 45, 314–325 (2014)

    Article  Google Scholar 

  8. H. Chae, H. Wang, M. Hong, W.C. Kim, J.G. Kim, H. Kim, S.Y. Lee, Stress corrosion cracking of a copper pipe in a heating water supply system. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00386-0

    Article  Google Scholar 

  9. American Society for Metals (ASM), Metals Handbook, Corrosion, vol. 13, 9th edn. (Metals Park, Ohio, 1987)

    Google Scholar 

  10. M. Jayalakshmi, V.S. Muralidharan, Empirical and deterministic models of pitting corrosion—an overview. Corros. Rev. 14(3–4), 375–402 (1996)

    Article  Google Scholar 

  11. E. Poursaeidi, O. Pedram, An outrun competition of corrosion fatigue and stress corrosion cracking on crack initiation in a compressor blade. Int. J. Eng. Trans. B Appl. 27(5), 785 (2013)

    Google Scholar 

  12. A.S.T.M. Standard, Standard guide for examination and evaluation of pitting corrosion (2005)

  13. C. Punckt, M. Bölscher, H.H. Rotermund, A.S. Mikhailov, L. Organ, N. Budiansky, J.R. Scully, J.L. Hudson, Sudden onset of pitting corrosion on stainless steel as a critical phenomenon. Science 305(5687), 1133–1136 (2004)

    Article  CAS  Google Scholar 

  14. W. Tian, N. Du, S. Li, S. Chen, Q. Wu, Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution. Corros. Sci. 85, 372–379 (2014)

    Article  CAS  Google Scholar 

  15. M.A. Amin, Metastable and stable pitting events on Al induced by chlorate and perchlorate anions—polarization, XPS and SEM studies. Electrochim. Acta 54(6), 1857–1863 (2009)

    Article  CAS  Google Scholar 

  16. C. Vasilescu, S.I. Drob, P. Osiceanu, P. Drob, J.M.C. Moreno, S. Preda, S. Ivanescu, E. Vasilescu, Surface analysis, microstructural, mechanical and electrochemical properties of new Ti–15Ta–5Zr alloy. Met. Mater. Int. 21(2), 242–250 (2015)

    Article  CAS  Google Scholar 

  17. S.W. Baek, J.K. Lee, J.J. Kim, K.J. Kim, Pitting failure of copper pipings for emergency fire sprinkler in ground water. Met. Mater. Int. 21(3), 479–484 (2015)

    Article  Google Scholar 

  18. D. Ifezue, Chloride pitting of steam generator boiler coils. J. Fail. Anal. Prev. 17(5), 831–837 (2017)

    Article  Google Scholar 

  19. T.S.L. Wijesinghe, D.J. Blackwood, Real time pit initiation studies on stainless steels: the effect of sulphide inclusions. Corros. Sci. 49(4), 1755–1764 (2007)

    Article  CAS  Google Scholar 

  20. D.K. Hamilton, T. Wilson, Three-dimensional surface measurement using the confocal scanning microscope. Appl. Phys. B 27(4), 211–213 (1982)

    Article  Google Scholar 

  21. W.B. Amos, J.G. White, How the confocal laser scanning microscope entered biological research. Biol. Cell 95(6), 335–342 (2003)

    Article  CAS  Google Scholar 

  22. B.V.R. Tata, B. Raj, Confocal laser scanning microscopy: applications in material science and technology. Bull. Mater. Sci. 21(4), 263–278 (1998)

    Article  CAS  Google Scholar 

  23. M.B. Dürrenberger, S. Handschin, B. Conde-Petit, F. Escher, Visualization of food structure by confocal laser scanning microscopy (CLSM). LWT Food Sci. Technol. 34(1), 11–17 (2001)

    Article  Google Scholar 

  24. M. Jasiczek, J. Kaczorowski, E. Kosieniak, M. Innocenti, A new approach to characterization of gas turbine components affected by pitting corrosion. J. Fail. Anal. Prev. 12(3), 305–313 (2012)

    Article  Google Scholar 

  25. M.S. Hong, S.H. Kim, S.Y. Im, J.G. Kim, Effect of ascorbic acid on the pitting resistance of 316L stainless steel in synthetic tap water. Met. Mater. Int. 22(4), 621–629 (2016)

    Article  CAS  Google Scholar 

  26. E.S.M. Sherif, F.H. Latief, H.S. Abdo, N.H. Alharthi, Electrochemical and spectroscopic study on the corrosion of Ti-5Al and Ti- 5Al-5Cu in chloride solutions. Met. Mater. Int. 25(6), 1511–1520 (2019)

    Article  CAS  Google Scholar 

  27. Avanindra, Multifrequency eddy current signal analysis. Master of Science Thesis, Iowa State University (1997)

  28. D.C. Copley, Eddy-current imaging for defect characterization, in Review of Progress in Quantitative Nondestructive Evaluation, vol. 2A, ed. by D.O. Thompson, D.E. Chimenti (Springer, Boston, 1983), pp. 1527–1540

    Chapter  Google Scholar 

  29. V.N. Uchanin, V.N. Tsirg, Detection of hidden corrosion damage in aviation structures by the eddy current method. Mater. Sci. 26(4), 475–477 (1991)

    Article  Google Scholar 

  30. B.R. Groshong, G.L. Bilbro, W.E. Snyder, Eddy current image restoration by constrained gradient descent. J. Nondestr. Eval. 10(4), 127–137 (1991)

    Article  Google Scholar 

  31. J.C. Moulder, M.W. Kubovich, E. Uzal, J.H. Rose, Pulsed eddy-current measurements of corrosion-induced metal loss: theory and experiment. Rev. Prog. Quant. Nondestr. Eval. 14, 2065–2072 (1995)

    Article  Google Scholar 

  32. R. Satveli, J.C. Moulder, J.H. Rose, Eddy-current detection of pitting corrosion in aircraft lap-splices. Rev. Prog. Quant. Nondestr. Eval. 15, 1755–1762 (1996)

    Article  Google Scholar 

  33. J.A. Bieber, C.C. Tai, J.C. Moulder, Quantitative assessment of corrosion in aircraft structures using scanning pulsed eddy current. Rev. Prog. Quant. Nondestr. Eval. 17, 315–322 (1998)

    Article  Google Scholar 

  34. B.A. Auld, J.C. Moulder, Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestr. Eval. 18(1), 3–36 (1999)

    Article  Google Scholar 

  35. D. Lamtenzan, M. Lozev, G. Washer, Detection and sizing of cracks in structural steel using the eddy current method (No. FHWA-RD-00-018). Turner-Fairbank Highway Research Center (2000)

  36. V.M. Uchanin, Eddy-current flaw detection in structural elements. Mater. Sci. 42(4), 494–501 (2006)

    Article  Google Scholar 

  37. V.P. Lunin, A.G. Zhdanov, D.Y. Lazutkin, A neural-network classifier of flaws for multifrequency eddy-current tests of heat-exchange pipes. Russ. J. Nondestr. Test. 43(3), 163–169 (2007)

    Article  CAS  Google Scholar 

  38. H. Shaikh, N. Sivaibharasi, B. Sasi, T. Anita, B.P.C. Rao, T. Jayakumar, R.K. Dayal, B. Raj, Effect of carbon content on eddy current response to sensitization and intergranular corrosion in simulated heat-affected zone of austenitic stainless steel. Weld. World 56(5–6), 44–53 (2012)

    Article  CAS  Google Scholar 

  39. A. da Cunha Rocha, M.C.L. Areiza, S.S. Tavares, J.M.A. Rebello, Microstructural evaluation of a lean duplex UNS S32304—X-ray diffraction and scanning electron microscopy techniques correlated with eddy current testing, in TMS 2014: 143rd Annual Meeting and Exhibition (Springer, Cham, 2014), pp. 741–749

  40. H.S. Shim, M.S. Choi, D.H. Lee, D.H. Hur, A prediction method for the general corrosion behavior of Alloy 690 steam generator tube using eddy current testing. Nucl. Eng. Des. 297, 26–31 (2016)

    Article  CAS  Google Scholar 

  41. A. Ziouche, M. Zergoug, N. Boucherrou, H. Boudjellal, M. Mokhtari, S. Abaidia, Pulsed eddy current signal analysis of ferrous and non-ferrous metals under thermal and corrosion solicitations. Russ. J. Nondestr. Test. 53(9), 652–659 (2017)

    Article  CAS  Google Scholar 

  42. V.A. Golovin, N.V. Pechnikov, S.B. Kapranov, N.N. Davidenko, A.M. Nemytova, P.D. Bachinskii, V.A. Trembovler, Using an eddy-current technique for studying local corrosion and scale formation on the walls of heat-exchanger tubes. Prot. Met. Phys. Chem. Surf. 52(7), 1197–1204 (2016)

    Article  CAS  Google Scholar 

  43. V.A. Golovin, N.V. Pechnikov, V.A. Shchelkov, A.Y. Tsivadze, Determination of the life cycle of heat-exchange tubes of vapor condensers on the basis of statistical analysis of local pitting corrosion according to data of eddy current testing. Prot. Met. Phys. Chem. Surf. 54(6), 1221–1232 (2018)

    Article  CAS  Google Scholar 

  44. A. Mansur, Modeling of mechanical properties of ceramic-metal composites for armor applications, Doctoral dissertation, University of Ottawa (2011)

  45. A. Midha, D.E. Wert, Martensitic age-hardenable stainless steel. Adv. Mater. Process. 169(9), 30–33 (2011)

    CAS  Google Scholar 

  46. W. Tian, S. Li, N. Du, S. Chen, Q. Wu, Effects of applied potential on stable pitting of 304 stainless steel. Corros. Sci. 93, 242–255 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Pedram.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedram, O., Mollapour, Y., Shayani-jam, H. et al. Pitting Corrosion Behavior of CUSTOM 450 Stainless Steel Using Electrochemical Characterization. Met. Mater. Int. 27, 4346–4356 (2021). https://doi.org/10.1007/s12540-020-00640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00640-w

Keywords

Navigation