Skip to main content

Advertisement

Log in

Improvement of two-phase heat transfer correlation superposition type for propane by genetic algorithm

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The prediction accuracies of the two-phase heat transfer coefficient for the flow in a small channel, which are usually based on the mean absolute error (MAE) between the correlation and experimental data, have remained unsatisfactory. Conventionally, the regression method has been used to determine the correlation that best represents the experimental data. In this paper, an improved heat transfer correlation for the evaporation of propane is developed by applying the genetic algorithm method. A total of 789 data points from 4 sources with circular diameters ranging from 1.0 to 6.0 mm are used to minimise the MAE while searching for the optimum conditions for the suppression factor, S, and convective factor, F, in a selected superposition correlation for two different vapour quality ranges. The optimisation can minimise the MAE at 33% and 25% for Case I and Case II, respectively. The proposed method assists in attaining a precise empirical prediction that fits well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

Optimisation variables

Bo :

Boiling number

C :

Chisholm parameter

D :

Diameter (m)

f :

Friction factor

F :

Convective factor

GA :

Genetic algorithm

G :

Mass flux (kg m−2 s−1)

g :

Gravitational acceleration, g = 9.81 m s−2

h :

Heat transfer coefficient (W m−2 K−1)

i :

Enthalpy (J kg−1)

k :

Thermal conductivity (W m−1 K−1)

M :

Molecular weight (kg kmol−1)

MAE :

Mean absolute error

P :

Pressure (Pa)

Pr :

Prandlt number

p r :

Reduced pressure

q :

Heat flux (W m−2)

Re :

Reynolds number

S :

Suppression factor

T sat :

Saturation temperature (°C)

x :

Vapour quality; GA design parameters

X :

Lockhart–Martinelli two-phase parameter

ρ :

Density (kg m−3)

μ :

Viscosity (kg m−1 s−1)

∅:

Two-phase multiplier

f :

liquid

fo :

single-phase liquid

g :

vapour

nb :

nucleate boiling

tp :

two-phase

References

  1. Ciconkov R (2018) Refrigerants: there is still no vision for sustainable solutions. Int J Refrigeration 86:441–448. https://doi.org/10.1016/j.ijrefrig.2017.12.006

    Article  Google Scholar 

  2. Grauso S, Mastrullo R, Mauro AW, Vanoli GP (2011) CO2 and propane blends: experiments and assessment of predictive methods for flow boiling in horizontal tubes. Int J Refrigeration 34(4):1028–1039. https://doi.org/10.1016/j.ijrefrig.2011.03.001

    Article  Google Scholar 

  3. Cavallini A, Del Col D, Rossetto L (2013) Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). Int J Refrigeration 36(2):287–300. https://doi.org/10.1016/j.ijrefrig.2012.11.005

    Article  Google Scholar 

  4. Fang X, Zhuang F, Chen C, Wu Q, Chen Y, Chen Y, He Y (2018) Saturated flow boiling heat transfer: review and assessment of prediction methods. Heat and Mass Transfer:1–26. https://doi.org/10.1007/s00231-018-2432-1

    Article  Google Scholar 

  5. Cheng L, Xia G (2017) Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels. Int J Heat Mass Transf 108:97–127. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.003

    Article  Google Scholar 

  6. Hamdar M, Zoughaib A, Clodic D (2010) Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel. Int J Refrigeration 33(3):566–577. https://doi.org/10.1016/j.ijrefrig.2009.12.006

    Article  Google Scholar 

  7. Yu W, France DM, Wambsganss MW, Hull JR (2002) Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. Int J Multiphase Flow 28:927–941

    Article  Google Scholar 

  8. Choi K-I, Pamitran AS, Oh J-T, Saito K (2009) Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels. Int J Refrigeration 32(5):837–845. https://doi.org/10.1016/j.ijrefrig.2008.12.005

    Article  Google Scholar 

  9. Oh J-T, Pamitran AS, Choi K-I, Hrnjak P (2011) Experimental investigation on two-phase flow boiling heat transfer of five refrigerants in horizontal small tubes of 0.5, 1.5 and 3.0mm inner diameters. Int J Heat Mass Transf 54(9–10):2080–2088. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.021

    Article  Google Scholar 

  10. Picanço SMA, Passos JC, Bandarra Filho EP (2009) Heat transfer coefficient correlation for convective boiling inside plain and microfin tubes using genetic algorithms. Heat Tranfer Eng 30(4):316–323. https://doi.org/10.1080/01457630802381905

    Article  Google Scholar 

  11. Porto MP, Pedro HTC, Machado L, Koury RNN, Lima CUS, Coimbra CFM (2014) Genetic optimization of heat transfer correlations for evaporator tube flows. Int J Heat Mass Transf 70:330–339. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.011

    Article  Google Scholar 

  12. Porto MP, Pedro HTC, Machado L, Koury RNN, Bandarra Filho EP, Coimbra CFM (2015) Optimized heat transfer correlations for pure and blended refrigerants. Int J Heat Mass Transf 85:577–584. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.102

    Article  Google Scholar 

  13. Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29(3):351–358

    Article  Google Scholar 

  14. Fang X, Wu Q, Yuan Y (2017) A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions. Int J Heat Mass Transf 107:972–981. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.125

    Article  Google Scholar 

  15. Tibiriçá CB, Rocha DM, Sueth ILS, Bochio G, Shimizu GKK, Barbosa MC, Ferreira SS (2017) A complete set of simple and optimized correlations for microchannel flow boiling and two-phase flow applications. App Thermal Eng 126:774–795. https://doi.org/10.1016/j.applthermaleng.2017.07.161

    Article  Google Scholar 

  16. Hughmark GA (1962) A statistical analysis of nucleate-pool-boiling data. Int J Heat Mass Transf 5:667–672

    Article  Google Scholar 

  17. Choi K-I, Oh J-T, Saito K, Jeong JS (2014) Comparison of heat transfer coefficient during evaporation of natural refrigerants and R-1234yf in horizontal small tube. Int J Refrigeration 41:210–218. https://doi.org/10.1016/j.ijrefrig.2013.06.017

    Article  Google Scholar 

  18. Lillo G, Mastrullo R, Mauro AW, Viscito L (2018) Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane (R290): experiments and assessment of predictive methods. Int J Heat Mass Transf 126:1236–1252. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.069

    Article  Google Scholar 

  19. Wang S, Gong MQ, Chen GF, Sun ZH, Wu JF (2014) Two-phase heat transfer and pressure drop of propane during saturated flow boiling inside a horizontal tube. Int J Refrigeration 41:200–209. https://doi.org/10.1016/j.ijrefrig.2013.03.019

    Article  Google Scholar 

  20. Longo GA, Mancin S, Righetti G, Zilio C (2017) Hydrocarbon refrigerants HC290 (propane) and HC1270 (propylene) low GWP long-term substitutes for HFC404A: a comparative analysis in vaporisation inside a small-diameter horizontal smooth tube. App Thermal Eng 124:707–715. https://doi.org/10.1016/j.applthermaleng.2017.06.080

    Article  Google Scholar 

  21. Sánchez D, Cabello R, Llopis R, Arauzo I, Catalán-Gil J, Torrella E (2017) Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. Int J Refrigeration 74:269–282. https://doi.org/10.1016/j.ijrefrig.2016.09.020

    Article  Google Scholar 

  22. He G, Liu F, Cai D, Jiang J (2016) Experimental investigation on flow boiling heat transfer performance of a new near azeotropic refrigerant mixture R290/R32 in horizontal tubes. Int J Heat Mass Transf 102:561–573. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.074

    Article  Google Scholar 

  23. Zhu Y, Wu X, Wei Z (2015) Heat transfer characteristics and correlation for CO2/propane mixtures flow evaporation in a smooth mini tube. App Thermal Eng 81:253–261. https://doi.org/10.1016/j.applthermaleng.2015.02.009

    Article  Google Scholar 

  24. Thonon B (2008) A review of hydrocarbon two-phase heat transfer in compact heat exchangers and enhanced geometries. Int J Refrigeration 31(4):633–642. https://doi.org/10.1016/j.ijrefrig.2008.02.006

    Article  Google Scholar 

  25. Heo J, Lee H, Yun R (2013) Two-phase flow boiling and condensation heat transfer characteristics of natural refrigerants: review. Int J Air-Cond Refrig 21(04):1330003. https://doi.org/10.1142/s2010132513300036

    Article  Google Scholar 

  26. Mastrullo R, Mauro AW, Menna L, Vanoli GP (2014) Replacement of R404A with propane in a light commercial vertical freezer: a parametric study of performances for different system architectures. Energy Convers Manag 82:54–60. https://doi.org/10.1016/j.enconman.2014.02.069

    Article  Google Scholar 

  27. Doke J (2005) Grabit. M, the MathWorks MatLab central website

  28. Pamitran AS, Choi K-I, Oh J-T, Nasruddin (2011) Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3, and CO2. Int J Multiphase Flow 37 (7):794–801. https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.005

    Article  Google Scholar 

  29. Maqbool MH, Palm B, Khodabandeh R (2013) Investigation of two phase heat transfer and pressure drop of propane in a vertical circular minichannel. Exp Thermal Fluid Sci 46:120–130. https://doi.org/10.1016/j.expthermflusci.2012.12.002

    Article  Google Scholar 

  30. de Oliveira JD, Passos JC, Copetti JB, van der Geld CWM (2018) Flow boiling heat transfer of propane in 1.0 mm tube. Exp Thermal Fluid Sci 96:243–256. https://doi.org/10.1016/j.expthermflusci.2018.03.010

    Article  Google Scholar 

  31. Mehendale SS, Jacobi AM, Shah RK (2000) Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Appl Mech Rev 53(7):175–193

    Article  Google Scholar 

  32. Kim S-M, Mudawar I (2014) Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int J Heat Mass Transf 77:624–652. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.036

    Article  Google Scholar 

  33. Del Col D, Bortolato M, Bortolin S (2014) Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel. Int J Refrigeration 47:66–84. https://doi.org/10.1016/j.ijrefrig.2014.08.002

    Article  Google Scholar 

  34. Fernando P, Palm B, Ameel T, Lundqvist P, Granryd E (2008) A minichannel aluminium tube heat exchanger – part II: evaporator performance with propane. Int J Refrigeration 31(4):681–695. https://doi.org/10.1016/j.ijrefrig.2008.02.012

    Article  Google Scholar 

  35. Wen M-Y, Ho C-Y (2005) Evaporation heat transfer and pressure drop characteristics of R-290 (propane), R-600 (butane), and a mixture of R-290/R-600 in the three-lines serpentine small-tube bank. App Thermal Eng 25(17–18):2921–2936. https://doi.org/10.1016/j.applthermaleng.2005.02.013

    Article  Google Scholar 

  36. Bertsch SS, Groll EA, Garimella SV (2009) A composite heat transfer correlation for saturated flow boiling in small channels. Int J Heat Mass Transf 52(7–8):2110–2118. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.022

    Article  Google Scholar 

  37. Kim S-M, Mudawar I (2013) Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – part II. Two-phase heat transfer coefficient. Int J Heat Mass Transf 64:1239–1256. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.014

    Article  Google Scholar 

  38. Mahmoud MM, Karayiannis TG (2013) Heat transfer correlation for flow boiling in small to micro tubes. Int J Heat Mass Transf 66:553–574. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.042

    Article  Google Scholar 

  39. Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329

    Article  Google Scholar 

  40. Cooper MG (1989) Flow boiling - the 'apparently nucleate'regime. Int J Heat Mass Transf 32(3):459–464

    Article  Google Scholar 

  41. Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass

  42. Chisholm D (1967) A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int J Heat Mass Transf 10:1767–1778

    Article  Google Scholar 

  43. Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45(1):39–48

    Google Scholar 

  44. Jung DS, McLinden M, Radermacher R, Didion D (1989) Horizontal flow boiling heat transfer experiments with a mixture of R22/ R114. Int J Heat Mass Transf 32(1):131–145

    Article  Google Scholar 

  45. Zhang W, Hibiki T, Mishima K (2004) Correlations for flow boiling heat transfer in mini-channels. Int J Heat Mass Transf 47:5749–5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034

    Article  Google Scholar 

  46. Xie GN, Sunden B, Wang QW (2008) Optimization of compact heat exchangers by a genetic algorithm. App Thermal Eng 28(8–9):895–906. https://doi.org/10.1016/j.applthermaleng.2007.07.008

    Article  Google Scholar 

  47. Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. Proceedings of the Second International Conference on Genetic Algorithms: 14–21

  48. Tibiriçá CB, Ribatski G (2013) Flow boiling in micro-scale channels – synthesized literature review. Int J Refrigeration 36(2):301–324. https://doi.org/10.1016/j.ijrefrig.2012.11.019

    Article  Google Scholar 

  49. Tibiriçá CB, Ribatski G (2010) Flow boiling heat transfer of R134a and R245fa in a 2.3mm tube. Int J Heat Mass Transf 53(11–12):2459–2468. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.038

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Grant Scheme (FRGS), Ministry of Education, Malaysia, under Vot5F070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normah Mohd-Ghazali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd-Yunos, Y., Mohd-Ghazali, N., Mohamad, M. et al. Improvement of two-phase heat transfer correlation superposition type for propane by genetic algorithm. Heat Mass Transfer 56, 1087–1098 (2020). https://doi.org/10.1007/s00231-019-02776-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02776-x

Navigation