Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glycomics studies using sialic acid derivatization and mass spectrometry

Abstract

Proteins can undergo glycosylation during and/or after translation to afford glycoconjugates, which are often secreted by a cell or populate cell surfaces. Changes in the glycan portion can have a strong influence on a glycoconjugate and are associated with a multitude of human pathologies. Of particular interest are sialylated glycoconjugates, which exist as constitutional isomers that differ in their linkages (α2,3, α2,6, α2,8 or α2,9) between sialic acids and their neighbouring monosaccharides. In general, mass spectrometry enables the rapid and sensitive characterization of glycosylation, but there are challenges specific to identifying and (relatively) quantifying sialic acid isomers. These challenges can be addressed using linkage-specific methodologies for sialic acid derivatization, after which mass spectrometry can enable product identification. This Review is concerned with the new and important derivatization approaches reported in the past decade, which have been implemented in various mass-spectrometry-glycomics workflows and have found clinical glycomics applications. The convenience and wide applicability of the approaches make them attractive for studies of sialylation in different types of glycoconjugate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prominent sialic acids and their variants.
Fig. 2: Sialylation is diverse and important in biology.
Fig. 3: Linkage-specific derivatization of sialic acids.
Fig. 4: MALDI-TOF-MS of released N-glycans after linkage-specific sialic acid derivatization.
Fig. 5: Solid-phase sample preparation aids analysis of protein N-glycosylation and O-glycosylation.
Fig. 6: Two-step linkage-specific sialic acid derivatization enables MS imaging of colorectal cancer.

Similar content being viewed by others

References

  1. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Lichtenthaler, F. W. Emil Fischer’s proof of the configuration of sugars: a centennial tribute. Angew. Chem. Int. Ed. 31, 1541–1556 (1992).

    Article  Google Scholar 

  3. Mulloy, B., Dell, A., Stanley, P. & Prestegard, J. H. in Essentials of Glycobiology (eds Varki, A. et al.) 639–652 (Cold Spring Harbor Laboratory Press, 2015).

  4. Wuhrer, M. Glycomics using mass spectrometry. Glycoconj. J. 30, 11–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Ashline, D. J., Zhang, H. & Reinhold, V. N. Isomeric complexity of glycosylation documented by MSn. Anal. Bioanal. Chem. 409, 439–451 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Gray, C. J. et al. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim. Biophys. Acta 1860, 1688–1709 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Ashwood, C., Lin, C.-H., Thaysen-Andersen, M. & Packer, N. H. Discrimination of isomers of released N- and O-glycans using diagnostic product ions in negative ion PGC-LC-ESI-MS/MS. J. Am. Soc. Mass. Spectrom. 29, 1194–1209 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Bunz, S.-C., Rapp, E. & Neusüss, C. Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal. Chem. 85, 10218–10224 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Veillon, L. et al. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 38, 2100–2114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rudd, P. M. et al. Oligosaccharide sequencing technology. Nature 388, 205–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Geyer, H. & Geyer, R. Strategies for analysis of glycoprotein glycosylation. Biochim. Biophys. Acta Proteins Proteom. 1764, 1853–1869 (2006).

    Article  CAS  Google Scholar 

  12. Lönngren, J. & Svensson, S. in Advances in Carbohydrate Chemistry and Biochemistry Vol. 29 (eds Tipson, R. S. & Horteon, D.) 41–106 (Elsevier, 1974).

  13. Wheeler, S. F., Domann, P. & Harvey, D. J. Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of α(2→3)- and α(2→6)-isomers. Rapid Commun. Mass. Spectrom. 23, 303–312 (2009). This seminal article described pioneering work in the derivatization of sialic acids to enable linkage-isomer differentiation by mass spectrometry.

    Article  CAS  PubMed  Google Scholar 

  14. Reiding, K. R., Blank, D., Kuijper, D. M., Deelder, A. M. & Wuhrer, M. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal. Chem. 86, 5784–5793 (2014). This work introduces the reagents EDC and HOBt for linkage-specific sialic acid derivatization under mild conditions, spawning further developments and applications of this derivatization approach in mass-spectrometry glycomics.

    Article  CAS  PubMed  Google Scholar 

  15. Nishikaze, T. Sialic acid derivatization for glycan analysis by mass spectrometry. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 95, 523–537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schauer, R. & Kamerling, J. P. Exploration of the sialic acid world. Adv. Carbohydr. Chem. Biochem. 75, 1–213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wasik, B. R., Barnard, K. N. & Parrish, C. R. Effects of sialic acid modifications on virus binding and infection. Trends Microbiol. 24, 991–1001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlin, A. F. et al. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113, 3333–3336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lehmann, F., Tiralongo, E. & Tiralongo, J. Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 63, 1331–1354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varki, A. & Angata, T. Siglecs — the major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Varki, A. & Gagneux, P. Multifarious roles of sialic acids in immunity. Ann. N. Y. Acad. Sci. 1253, 16–36 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 19, 507–514 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schultz, M. J., Swindall, A. F. & Bellis, S. L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev. 31, 501–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mechref, Y., Kang, P. & Novotny, M. V. Differentiating structural isomers of sialylated glycans by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 20, 1381–1389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toyoda, M., Ito, H., Matsuno, Y. K., Narimatsu, H. & Kameyama, A. Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal. Chem. 80, 5211–5218 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Gil, G.-C., Iliff, B., Cerny, R., Velander, W. H. & Van Cott, K. E. High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 82, 6613–6620 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Endo, S.-i, Morita, M., Ueno, M., Maeda, T. & Terabayashi, T. Fluorescent labeling of a carboxyl group of sialic acid for MALDI-MS analysis of sialyloligosaccharides and ganglioside. Biochem. Biophys. Res. Commun. 378, 890–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Sekiya, S., Wada, Y. & Tanaka, K. Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77, 4962–4968 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Miura, Y., Shinohara, Y., Furukawa, J.-i., Nagahori, N. & Nishimura, S.-I. Rapid and simple solid-phase esterification of sialic acid residues for quantitative glycomics by mass spectrometry. Chem. Eur. J. 13, 4797–4804 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, X., Qiu, H., Lee, R. K., Chen, W. & Li, J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both α2,3- and α2,6-linked sialic acids. Anal. Chem. 82, 8300–8306 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, P., Werner-Zwanziger, U., Wiesler, D., Pagel, M. & Novotny, M. V. Mass spectrometric analysis of benzoylated sialooligosaccharides and differentiation of terminal α2→3 and α2→6 sialogalactosylated linkages at subpicomole levels. Anal. Chem. 71, 4969–4973 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Pudelko, M. et al. Formation of lactones from sialylated MUC1 glycopeptides. Org. Biomol. Chem. 4, 713–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Galuska, S. P., Geyer, R., Mühlenhoff, M. & Geyer, H. Characterization of oligo- and polysialic acids by MALDI-TOF-MS. Anal. Chem. 79, 7161–7169 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Alley, W. R. Jr & Novotny, M. V. Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins. J. Proteome Res. 9, 3062–3072 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tousi, F., Bones, J., Hancock, W. S. & Hincapie, M. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform. Anal. Chem. 85, 8421–8428 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Bladergroen, M. R. et al. Automation of high-throughput mass spectrometry-based plasma N-glycome analysis with linkage-specific sialic acid esterification. J. Proteome Res. 14, 4080–4086 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Reusch, D. et al. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles — Part 2: Mass spectrometric methods. MAbs 7, 732–742 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Borelli, V. et al. Plasma N-glycome signature of Down syndrome. J. Proteome Res. 14, 4232–4245 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Clerc, F. et al. Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology 155, 829–843 (2018). This study exemplifies the use of mass-spectrometry glycomics with sialic acid derivatization in high-throughput analysis, here evaluating more than 2,000 clinical samples.

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt, C. Q. et al. Biophysical analysis of sialic acid recognition by the complement regulator Factor H. Glycobiology 28, 765–773 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. de Vroome, S. W. et al. Serum N-glycome alterations in colorectal cancer associate with survival. Oncotarget 9, 30610–30623 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Z. et al. Serum protein N-glycosylation changes in multiple myeloma. Biochim. Biophys. Acta Gen. Subj. 1863, 960–970 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. de Haan, N. et al. Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal. Chem. 87, 8284–8291 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Holst, S. et al. Linkage-specific in situ sialic acid derivatization for N-glycan mass spectrometry imaging of formalin-fixed paraffin-embedded tissues. Anal. Chem. 88, 5904–5913 (2016). This is the first publication describing a two-step approach to form stable amides from α2,3-linked sialic acids. This approach was implemented in many new workflows, including in situ mass-spectrometry imaging of N-glycans.

    Article  CAS  PubMed  Google Scholar 

  46. Li, H., Gao, W., Feng, X., Liu, B.-F. & Liu, X. MALDI-MS analysis of sialylated N-glycan linkage isomers using solid-phase two step derivatization method. Anal. Chim. Acta 924, 77–85 (2016). The first solid-phase approach is described, whereby two-step sialic acid derivatization of free N-glycans involves immobilization and treatment with MeNH 2 to give stable methyl α2,3-linked sialic carboxamides.

    Article  CAS  PubMed  Google Scholar 

  47. Khatri, K. et al. Microfluidic capillary electrophoresis–mass spectrometry for analysis of monosaccharides, oligosaccharides, and glycopeptides. Anal. Chem. 89, 6645–6655 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, S., Jankowska, E., Kosikova, M., Xie, H. & Cipollo, J. Solid-phase chemical modification for sialic acid linkage analysis: application to glycoproteins of host cells used in influenza virus propagation. Anal. Chem. 89, 9508–9517 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, S. et al. Modification of sialic acids on solid phase: accurate characterization of protein sialylation. Anal. Chem. 89, 6330–6335 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vreeker, G. C. M. et al. Automated plasma glycomics with linkage-specific sialic acid esterification and ultrahigh resolution MS. Anal. Chem. 90, 11955–11961 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, S., Wu, W. W., Shen, R. F., Bern, M. & Cipollo, J. Identification of sialic acid linkages on intact glycopeptides via differential chemical modification using IntactGIG-HILIC. J. Am. Soc. Mass. Spectrom. 29, 1273–1283 (2018). This work describes sialic acid derivatization of intact glycoproteins before proteolytic-glycopeptide generation, which is a promising approach for mass-spectrometry glycoproteomics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, Y. et al. Sensitive and robust MALDI-TOF-MS glycomics analysis enabled by Girard’s reagent T on-target derivatization (GTOD) of reducing glycans. Anal. Chim. Acta 1048, 105–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Jansen, B. C. et al. MassyTools: a high-throughput targeted data processing tool for relative quantitation and quality control developed for glycomic and glycoproteomic MALDI-MS. J. Proteome Res. 14, 5088–5098 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nishikaze, T. et al. Differentiation of sialyl linkage isomers by one-pot sialic acid derivatization for mass spectrometry-based glycan profiling. Anal. Chem. 89, 2353–2360 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Hennig, R. et al. Towards personalized diagnostics via longitudinal study of the human plasma N-glycome. Biochim. Biophys. Acta Gen. Subj. 1860, 1728–1738 (2016).

    Article  CAS  Google Scholar 

  56. Reiding, K. R. et al. High-throughput serum N-glycomics: method comparison and application to study rheumatoid arthritis and pregnancy-associated changes. Mol. Cell. Proteomics 18, 3–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Saldova, R. et al. Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J. Proteome Res. 13, 2314–2327 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. El-Faham, A. & Albericio, F. Peptide coupling reagents, more than a letter soup. Chem. Rev. 111, 6557–6602 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Pongracz, T., Wuhrer, M. & de Haan, N. Expanding the reaction space of linkage-specific sialic acid derivatization. Molecules 24, 3617 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  60. Peng, Y., Wang, L., Zhang, Y., Bao, H. & Lu, H. Stable isotope sequential derivatization for linkage-specific analysis of sialylated N-glycan isomers by MS. Anal. Chem. 91, 15993–16001 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Snyder, C. M. et al. Capillary electrophoresis–mass spectrometry for direct structural identification of serum N-glycans. J. Chromatogr. A 1523, 127–139 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki, N., Abe, T. & Natsuka, S. Quantitative LC-MS and MS/MS analysis of sialylated glycans modified by linkage-specific alkylamidation. Anal. Biochem. 567, 117–127 (2019). Here, a very thorough evaluation and comparison of two-step-derivatization methods is reported for a broad variety of glycan model compounds, making use of liquid-phase-separation techniques to properly assess the level of by-product formation.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang, K. et al. Sialic acid linkage-specific permethylation for improved profiling of protein glycosylation by MALDI-TOF MS. Anal. Chim. Acta 981, 53–61 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hanamatsu, H. et al. Sialic acid linkage specific derivatization of glycosphingolipid glycans by ring-opening aminolysis of lactones. Anal. Chem. 90, 13193–13199 (2018). This work introduces fast, direct aminolysis of α2,3-linked sialic acid lactones without the need for a carboxylic-acid activator. This provided insight into the mechanism of α2,3-linked sialic acid amidation.

    Article  CAS  PubMed  Google Scholar 

  65. Lageveen-Kammeijer, G. S. M. et al. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples. Nat. Commun. 10, 2137 (2019). This study demonstrates the use of two-step, linkage-specific sialic acid derivatization in high-sensitivity workflows employing electrospray ionization mass spectrometry.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Li, H. et al. Solid-phase methylamidation for sialoglycomics by MALDI-MS. Anal. Bioanal. Chem. 406, 6235–6246 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Nishikaze, T., Kawabata, S.-i. & Tanaka, K. In-depth structural characterization of N-linked glycopeptides using complete derivatization for carboxyl groups followed by positive- and negative-ion tandem mass spectrometry. Anal. Chem. 86, 5360–5369 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Sun, S. et al. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat. Biotechnol. 34, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Hanamatsu, H. et al. Comparative glycomic analysis of sialyl linkage isomers by sialic acid linkage-specific alkylamidation in combination with stable isotope labeling of α2,3-linked sialic acid residues. Anal. Chem. 91, 13343–13348 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Lifely, M. R., Gilbert, A. S. & Moreno, C. Sialic acid polysaccharide antigens of Neisseria meningitidis and Escherichia coli: esterification between adjacent residues. Carbohydr. Res. 94, 193–203 (1981).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Y. & Lee, Y. C. Acid-catalyzed lactonization of α2,8-linked oligo/polysialic acids studied by high performance anion-exchange chromatography. J. Biol. Chem. 274, 6183–6189 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Bigge, J. C. et al. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Varki, A. & Diaz, S. The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups. Anal. Biochem. 137, 236–247 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Reiding, K. R., Hipgrave Ederveen, A. L., Rombouts, Y. & Wuhrer, M. Murine plasma N-glycosylation traits associated with sex and strain. J. Proteome Res. 15, 3489–3499 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, Z. et al. Characterization of O-acetylation in sialoglycans by MALDI-MS using a combination of methylamidation and permethylation. Sci. Rep. 7, 46206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reiding, K. R. et al. Serum protein N-glycosylation changes with rheumatoid arthritis disease activity during and after pregnancy. Front. Med. 4, 241 (2017).

    Article  Google Scholar 

  77. Vreeker, G. C. M. et al. Dried blood spot N-glycome analysis by MALDI mass spectrometry. Talanta 205, 120104 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Stavenhagen, K. et al. N- and O-glycosylation analysis of human C1-inhibitor reveals extensive mucin-type O-glycosylation. Mol. Cell. Proteomics 17, 1225–1238 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Holst, S., Wilding, J. L., Koprowska, K., Rombouts, Y. & Wuhrer, M. N-glycomic and transcriptomic changes associated with CDX1 mRNA expression in colorectal cancer cell lines. Cell 8, 273 (2019).

    Article  CAS  Google Scholar 

  80. Koçak, O. F. et al. N-glycan profiling of papillary thyroid carcinoma tissues by MALDI-TOF-MS. Anal. Biochem. 584, 113389 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Gao, X. et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of human milk neutral and sialylated free oligosaccharides using Girard’s reagent P on-target derivatization. J. Agric. Food Chem. 67, 8958–8966 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, S. & Zhang, H. Solid-phase glycan isolation for glycomics analysis. Proteomics Clin. Appl. 6, 596–608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou, X., Yang, S., Yang, G., Tan, Z. & Guan, F. Two-step derivatization and mass spectral distinction of α2,3 and α2,6 sialic acid linkages on N-glycans by MALDI-TOF. Chin. Chem. Lett. 30, 676–680 (2019).

    Article  CAS  Google Scholar 

  84. Jensen, P. H., Karlsson, N. G., Kolarich, D. & Packer, N. H. Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7, 1299–1310 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Yang, S., Hu, Y., Sokoll, L. & Zhang, H. Simultaneous quantification of N- and O-glycans using a solid-phase method. Nat. Protoc. 12, 1229–1244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nan, L. et al. Comprehensive quali-quantitative profiling of neutral and sialylated O-glycome by mass spectrometry based on oligosaccharide metabolic engineering and isotopic labeling. RSC Adv. 9, 15694–15702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhong, X. et al. Capillary electrophoresis–electrospray ionization-mass spectrometry for quantitative analysis of glycans labeled with multiplex carbonyl-reactive tandem mass tags. Anal. Chem. 87, 6527–6534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mancera-Arteu, M., Gimenez, E., Barbosa, J. & Sanz-Nebot, V. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion. Anal. Chim. Acta 940, 92–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Ruhaak, L. R. et al. Optimized workflow for preparation of APTS-labeled N-glycans allowing high-throughput analysis of human plasma glycomes using 48-channel multiplexed CGE-LIF. J. Proteome Res. 9, 6655–6664 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Albrecht, S. et al. Twoplex 12/13C6 aniline stable isotope and linkage-specific sialic acid labeling 2D-LC-MS workflow for quantitative N-glycomics. Proteomics 17, 1600304 (2017).

    Article  CAS  Google Scholar 

  91. Qin, W. et al. Providing bionic glycome as internal standards by glycan reducing and isotope labeling for reliable and simple quantitation of N-glycome based on MALDI- MS. Anal. Chim. Acta 1081, 112–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Prien, J. M., Prater, B. D., Qin, Q. & Cockrill, S. L. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal. Chem. 82, 1498–1508 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Walker, S. H., Budhathoki-Uprety, J., Novak, B. M. & Muddiman, D. C. Stable-isotope labeled hydrophobic hydrazide reagents for the relative quantification of N-linked glycans by electrospray ionization mass spectrometry. Anal. Chem. 83, 6738–6745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, P. et al. Relative quantitation of glycans using stable isotopic labels 1-(d0/d5) phenyl-3-methyl-5-pyrazolone by mass spectrometry. Anal. Biochem. 418, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, S. et al. QUANTITY: an isobaric tag for quantitative glycomics. Sci. Rep. 5, 17585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, S. et al. Glycan analysis by isobaric aldehyde reactive tags and mass spectrometry. Anal. Chem. 85, 8188–8195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gomes de Oliveira, A. G. et al. A systematic study of glycopeptide esterification for the semi-quantitative determination of sialylation in antibodies. Rapid Commun. Mass. Spectrom. 29, 1817–1826 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Yang, S. et al. Deciphering protein O-glycosylation: solid-phase chemoenzymatic cleavage and enrichment. Anal. Chem. 90, 8261–8269 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Bondt, A. et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol. Cell. Proteomics 13, 3029–3039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dotz, V. et al. Plasma protein N-glycan signatures of type 2 diabetes. Biochim. Biophys. Acta Gen. Subj. 1862, 2613–2622 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Reiding, K. R. et al. Serum protein N-glycosylation changes with rheumatoid arthritis disease activity during and after pregnancy. Front. Med. 4, 241 (2018).

    Article  Google Scholar 

  102. Qin, R. et al. Discovery of non-invasive glycan biomarkers for detection and surveillance of gastric cancer. J. Cancer 8, 1908–1926 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jansen, B. C. et al. Pregnancy-associated serum N-glycome changes studied by high-throughput MALDI-TOF-MS. Sci. Rep. 6, 23296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hafkenscheid, L. et al. Structural analysis of variable domain glycosylation of anti-citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly sialylated glycans. Mol. Cell. Proteomics 16, 278–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Falck, D. et al. Affinity purification of erythropoietin from cell culture supernatant combined with MALDI-TOF-MS analysis of erythropoietin N-glycosylation. Sci. Rep. 7, 5324 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Holst, S. et al. N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression. Mol. Cell. Proteomics 15, 124–140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dědová, T., Braicu, E. I., Sehouli, J. & Blanchard, V. Sialic acid linkage analysis refines the diagnosis of ovarian cancer. Front. Oncol. 9, 261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dotz, V. & Wuhrer, M. N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett. 593, 2966–2976 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Crecelius, A. C., Schubert, U. S. & von Eggeling, F. MALDI mass spectrometric imaging meets “omics”: recent advances in the fruitful marriage. Analyst 140, 5806–5820 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Oh, M. J. et al. Analytical detection and characterization of biopharmaceutical glycosylation by MS. Bioanalysis 8, 711–727 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Reusch, D. & Tejada, M. L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25, 1325–1334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, Z., Shah, B. & Richardson, J. Impact of Fc N-glycan sialylation on IgG structure. MAbs 8, 1381–1390 (2019).

    Article  CAS  Google Scholar 

  113. Hendrickson, O. D. & Zherdev, A. V. Analytical application of lectins. Crit. Rev. Anal. Chem. 48, 279–292 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Goldstein, I. J., Winter, H. C. & Poretz, R. D. in New Comprehensive Biochemistry Vol. 29 (eds Montreuil, J., Vliegenthart, J. F. G. & Schachter, H.) 403–474 (Elsevier, 1997).

  115. Kammeijer, G. S. M. et al. Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis–electrospray ionization–mass spectrometry. Sci. Rep. 7, 3733 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Guttman, M. & Lee, K. K. Site-specific mapping of sialic acid linkage isomers by ion mobility spectrometry. Anal. Chem. 88, 5212–5217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pallister, E. G. et al. Exploiting the disialyl galactose activity of α2,6-sialyltransferase from Photobacterium damselae to generate a highly sialylated recombinant α-1-antitrypsin. Biochemistry https://doi.org/10.1021/acs.biochem.9b00563 (2019).

    Article  PubMed  Google Scholar 

  118. Royle, L., Radcliffe, C. M., Dwek, R. A. & Rudd, P. M. Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. Methods Mol. Biol. 347, 125–143 (2006).

    CAS  PubMed  Google Scholar 

  119. Zhao, J. et al. Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal. Chem. 88, 7049–7059 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Banazadeh, A. et al. Characterization of glycan isomers using magnetic carbon nanoparticles as a MALDI co-matrix. RSC Adv. 9, 20137–20148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Lippold and T. Pongracz for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data and literature for the article and contributed to discussion of content and writing. All authors reviewed and edited the manuscript before submission. N.d.H. and M.W. wrote the first version of the manuscript. N.d.H. prepared the figures.

Corresponding author

Correspondence to Noortje de Haan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Haan, N., Yang, S., Cipollo, J. et al. Glycomics studies using sialic acid derivatization and mass spectrometry. Nat Rev Chem 4, 229–242 (2020). https://doi.org/10.1038/s41570-020-0174-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0174-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing